Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 内科学 心脏病学 再狭窄 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez‐Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier BV]
卷期号:36 (10): 1624-1632 被引量:43
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Afliea采纳,获得10
4秒前
4秒前
安安应助大胆的茗茗采纳,获得10
4秒前
胡楠完成签到,获得积分10
4秒前
烟花应助LuLu采纳,获得10
5秒前
姐姐完成签到,获得积分10
6秒前
tian发布了新的文献求助10
9秒前
suiyi完成签到,获得积分20
13秒前
Rena发布了新的文献求助10
15秒前
birdy完成签到,获得积分10
17秒前
edtaa完成签到 ,获得积分10
18秒前
xzy998发布了新的文献求助10
20秒前
野火197完成签到,获得积分10
22秒前
li完成签到,获得积分10
23秒前
何况我是单身狗完成签到,获得积分20
23秒前
充电宝应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
Auston_zhong应助科研通管家采纳,获得10
24秒前
1111应助科研通管家采纳,获得10
24秒前
24秒前
完美世界应助现实的行云采纳,获得10
26秒前
唠叨的傲薇完成签到 ,获得积分10
26秒前
28秒前
wangxinyan990920完成签到,获得积分10
29秒前
31秒前
31秒前
NexusExplorer应助madmax采纳,获得10
33秒前
ding应助tian采纳,获得10
33秒前
Andorchid发布了新的文献求助10
33秒前
34秒前
Ra321完成签到,获得积分10
36秒前
37秒前
123完成签到,获得积分10
37秒前
38秒前
快乐雁菱发布了新的文献求助10
38秒前
李爱国应助JAYZHANG采纳,获得10
39秒前
CipherSage应助Rena采纳,获得10
40秒前
40秒前
42秒前
tf发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781094
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227563
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669546
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734