Con&Net: A Cross-Network Anchor Link Discovery Method Based on Embedding Representation

嵌入 相似性(几何) 计算机科学 代表(政治) 余弦相似度 链接(几何体) 数据挖掘 特征(语言学) 特征向量 相似性度量 理论计算机科学 情报检索 人工智能 模式识别(心理学) 计算机网络 哲学 法学 图像(数学) 政治 语言学 政治学
作者
Xueyuan Wang,Hongpo Zhang,Zongmin Wang,Yaqiong Qiao,Jiangtao Ma,Honghua Dai
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (2): 1-18 被引量:1
标识
DOI:10.1145/3469083
摘要

Cross-network anchor link discovery is an important research problem and has many applications in heterogeneous social network. Existing schemes of cross-network anchor link discovery can provide reasonable link discovery results, but the quality of these results depends on the features of the platform. Therefore, there is no theoretical guarantee to the stability. This article employs user embedding feature to model the relationship between cross-platform accounts, that is, the more similar the user embedding features are, the more similar the two accounts are. The similarity of user embedding features is determined by the distance of the user features in the latent space. Based on the user embedding features, this article proposes an embedding representation-based method Con&Net(Content and Network) to solve cross-network anchor link discovery problem. Con&Net combines the user’s profile features, user-generated content (UGC) features, and user’s social structure features to measure the similarity of two user accounts. Con&Net first trains the user’s profile features to get profile embedding. Then it trains the network structure of the nodes to get structure embedding. It connects the two features through vector concatenating, and calculates the cosine similarity of the vector based on the embedding vector. This cosine similarity is used to measure the similarity of the user accounts. Finally, Con&Net predicts the link based on similarity for account pairs across the two networks. A large number of experiments in Sina Weibo and Twitter networks show that the proposed method Con&Net is better than state-of-the-art method. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve predicted by the anchor link is 11% higher than the baseline method, and Precision@30 is 25% higher than the baseline method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11发布了新的文献求助10
2秒前
水薄荷完成签到,获得积分10
3秒前
Invincible完成签到 ,获得积分10
4秒前
霍师傅发布了新的文献求助20
4秒前
Chenly完成签到,获得积分10
5秒前
一昂完成签到 ,获得积分10
5秒前
感动满天完成签到,获得积分10
5秒前
852应助坚定惊蛰采纳,获得10
6秒前
小二郎应助cindy采纳,获得10
8秒前
善学以致用应助mll采纳,获得10
9秒前
蜡笔小z发布了新的文献求助10
10秒前
淡淡瓜子完成签到 ,获得积分10
11秒前
way完成签到,获得积分10
13秒前
SciGPT应助fafafasci采纳,获得30
13秒前
搜集达人应助天真乌冬面采纳,获得10
14秒前
禾禹泉士完成签到,获得积分10
15秒前
Drwang完成签到,获得积分10
15秒前
看文献了完成签到,获得积分10
18秒前
19秒前
无花果应助way采纳,获得10
21秒前
21秒前
23秒前
永无终点完成签到,获得积分10
24秒前
25秒前
fafafasci发布了新的文献求助30
25秒前
eurus发布了新的文献求助10
26秒前
地表飞猪完成签到,获得积分10
26秒前
loen发布了新的文献求助10
27秒前
29秒前
36秒前
38秒前
39秒前
科研通AI5应助小杨采纳,获得30
41秒前
村长热爱美丽完成签到 ,获得积分10
41秒前
42秒前
JJ发布了新的文献求助10
44秒前
GG完成签到,获得积分10
44秒前
鸡鱼蚝发布了新的文献求助10
46秒前
星辰大海应助JJ采纳,获得10
50秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445