Utilizing Artificial Intelligence to Predict the Superplasticizer Demand of Self-Consolidating Concrete Incorporating Pumice, Slag, and Fly Ash Powders

高效减水剂 粉煤灰 浮石 自密实混凝土 材料科学 熔渣(焊接) 冶金 复合材料 废物管理 抗压强度 水泥 工程类 地质学 火山 地震学
作者
Jing Liu,Masoud Mohammadi,Yubao Zhan,Pengqiang Zheng,Maria Rashidi,Peyman Mehrabi
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:14 (22): 6792-6792 被引量:60
标识
DOI:10.3390/ma14226792
摘要

Self-consolidating concrete (SCC) is a well-known type of concrete, which has been employed in different structural applications due to providing desirable properties. Different studies have been performed to obtain a sustainable mix design and enhance the fresh properties of SCC. In this study, an adaptive neuro-fuzzy inference system (ANFIS) algorithm is developed to predict the superplasticizer (SP) demand and select the most significant parameter of the fresh properties of optimum mix design. For this purpose, a comprehensive database consisting of verified test results of SCC incorporating cement replacement powders including pumice, slag, and fly ash (FA) has been employed. In this regard, at first, fresh properties tests including the J-ring, V-funnel, U-box, and different time interval slump values were considered to collect the datasets. At the second stage, five models of ANFIS were adjusted and the most precise method for predicting the SP demand was identified. The correlation coefficient (R2), Pearson’s correlation coefficient (r), Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE), mean absolute error (MAE), and Wilmot’s index of agreement (WI) were used as the measures of precision. Later, the most effective parameters on the prediction of SP demand were evaluated by the developed ANFIS. Based on the analytical results, the employed algorithm was successfully able to predict the SP demand of SCC with high accuracy. Finally, it was deduced that the V-funnel test is the most reliable method for estimating the SP demand value and a significant parameter for SCC mix design as it led to the lowest training root mean square error (RMSE) compared to other non-destructive testing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clxgene发布了新的文献求助30
刚刚
朴素的不乐完成签到 ,获得积分10
1秒前
hua发布了新的文献求助10
1秒前
清脆如娆完成签到 ,获得积分10
2秒前
柠觉呢完成签到 ,获得积分10
3秒前
4秒前
fubq0321完成签到 ,获得积分10
4秒前
HwH发布了新的文献求助10
5秒前
酷炫的大碗完成签到,获得积分10
6秒前
WYB完成签到 ,获得积分10
7秒前
lk完成签到,获得积分10
7秒前
我不发布了新的文献求助10
7秒前
8秒前
万椿完成签到,获得积分10
8秒前
孤独曲奇完成签到,获得积分10
9秒前
10秒前
666完成签到 ,获得积分10
11秒前
huche发布了新的文献求助10
11秒前
ll完成签到 ,获得积分10
14秒前
15秒前
Itazu完成签到,获得积分10
15秒前
ZHUYANYAN完成签到,获得积分10
16秒前
16秒前
CCCC发布了新的文献求助10
16秒前
yunqingbai完成签到 ,获得积分10
17秒前
zzz完成签到,获得积分20
17秒前
momi完成签到 ,获得积分10
17秒前
一叶知秋完成签到,获得积分10
18秒前
tong童完成签到 ,获得积分10
18秒前
白江虎完成签到 ,获得积分20
19秒前
19秒前
20秒前
梁小米完成签到,获得积分10
21秒前
LeiYu完成签到 ,获得积分10
21秒前
21秒前
CYH完成签到,获得积分10
22秒前
科研通AI6应助典雅的俊驰采纳,获得10
22秒前
朱美润完成签到 ,获得积分10
22秒前
yaoyao完成签到,获得积分10
23秒前
小杜给小杜的求助进行了留言
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Comparative Efficacy of Advanced Therapies for Management of Moderate-to-Severe Crohn's Disease: 2025 AGA Evidence Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5129289
求助须知:如何正确求助?哪些是违规求助? 4331728
关于积分的说明 13495473
捐赠科研通 4168093
什么是DOI,文献DOI怎么找? 2284793
邀请新用户注册赠送积分活动 1285813
关于科研通互助平台的介绍 1226686