Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis

沃马克 接收机工作特性 骨关节炎 人工智能 医学 射线照相术 卷积神经网络 局部二进制模式 梯度升压 计算机科学 随机森林 放射科 内科学 病理 直方图 替代医学 图像(数学)
作者
Neslihan Bayramog̃lu,Miika T. Nieminen,Simo Saarakkala
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:157: 104627-104627 被引量:47
标识
DOI:10.1016/j.ijmedinf.2021.104627
摘要

To assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs.We used lateral view knee radiographs from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder), and subsequently, these anatomical landmarks were used to extract three different texture ROIs. Hand-crafted features, based on Local Binary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve -average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting.Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC = 0.889, AP = 0.714).We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangqianyu发布了新的文献求助10
刚刚
天天快乐应助11采纳,获得10
1秒前
xk完成签到,获得积分20
1秒前
无极微光应助蒸馏水采纳,获得20
1秒前
1秒前
苏小小发布了新的文献求助10
1秒前
星河长明完成签到,获得积分10
1秒前
白白白完成签到,获得积分10
1秒前
起风了完成签到,获得积分10
2秒前
无限的雨梅完成签到 ,获得积分10
2秒前
Hello应助科研小白采纳,获得10
2秒前
2秒前
3秒前
Jasper应助竞鹤采纳,获得10
3秒前
zj发布了新的文献求助20
3秒前
liujiahao完成签到,获得积分10
3秒前
zengzeng完成签到,获得积分10
3秒前
3秒前
Fly完成签到 ,获得积分10
3秒前
3秒前
是~巧呀完成签到,获得积分10
4秒前
bzc229完成签到,获得积分0
4秒前
huan发布了新的文献求助10
4秒前
4秒前
王小小发布了新的文献求助10
4秒前
4秒前
清脆的冰蝶完成签到,获得积分10
4秒前
4秒前
起风了发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
宝宝巴士发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得100
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555522
求助须知:如何正确求助?哪些是违规求助? 4640335
关于积分的说明 14660350
捐赠科研通 4582274
什么是DOI,文献DOI怎么找? 2513273
邀请新用户注册赠送积分活动 1487889
关于科研通互助平台的介绍 1458905