人工智能
计算机视觉
计算机科学
管道(软件)
运动(物理)
单眼
跟踪(教育)
代表(政治)
匹配移动
三维重建
心理学
政治学
教育学
政治
程序设计语言
法学
作者
David Recasens,José Lamarca,José M. Fácil,J. M. M. Montiel,Javier Civera
出处
期刊:IEEE robotics and automation letters
日期:2021-07-08
卷期号:6 (4): 7225-7232
被引量:89
标识
DOI:10.1109/lra.2021.3095528
摘要
Estimating a scene reconstruction and the camera motion from in-body videos is challenging due to several factors, e.g. the deformation of in-body cavities or the lack of texture. In this paper we present Endo-Depth-and-Motion, a pipeline that estimates the 6-degrees-of-freedom camera pose and dense 3D scene models from monocular endoscopic sequences. Our approach leverages recent advances in self-supervised depth networks to generate pseudo-RGBD frames, then tracks the camera pose using photometric residuals and fuses the registered depth maps in a volumetric representation. We present an extensive experimental evaluation in the public dataset Hamlyn, showing high-quality results and comparisons against relevant baselines. We also release all models and code 1 for future comparisons.
科研通智能强力驱动
Strongly Powered by AbleSci AI