Evolution of Deep Learning Algorithms for MRI-Based Brain Tumor Image Segmentation.

磁共振成像 模式识别(心理学) 计算机视觉 医学影像学 人工神经网络 Sørensen–骰子系数 尺度空间分割 神经影像学
作者
Khaled Shal,M. S. Choudhry
出处
期刊:Critical Reviews in Biomedical Engineering [Begell House]
卷期号:49 (1): 77-94 被引量:1
标识
DOI:10.1615/critrevbiomedeng.2021035557
摘要

Brain tumor textures are among the most challenging features for neuroradiologists to extract from magnetic resonance images (MRIs). Exceptionally high-grade tumors such as gliomas require quick and precise diagnosis and medical intervention due to their infiltrative and fast-spreading nature. Therefore, they require computer assistance instead of manual methods. Deep learning (DL) methods are currently on the rise and have become an active field of research in several domains varying from stock market analysis to deep space object detection. They have very promising potential in brain tumor feature extraction from MRIs. Convolutional neural network (CNN) architectures, one of the most influential families of DL algorithms, have undergone a profound transformation since their first successes. This has led to increasing feature extraction quality and algorithm generalizability over various brain tumor types and grades. This review paper presents an explanatory and comparative survey on MRI-based brain tumor image segmentation. First, it provides the survey background and the typical process chain for brain MRI segmentation using CNNs. Second, it details the typical CNN architecture structure and its advantages over other machine learning algorithms. CNN architectures proposed for this purpose are enumerated and classified corresponding to their complexity, and then compared using specific metrics that consider the datasets they use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙尚丹发布了新的文献求助10
1秒前
科研通AI5应助巴啦啦能量采纳,获得10
2秒前
顾矜应助zhangfan采纳,获得10
3秒前
科研通AI6应助欣慰妙海采纳,获得30
3秒前
4秒前
sanch发布了新的文献求助10
4秒前
4秒前
KAG发布了新的文献求助10
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
简单酸奶完成签到,获得积分10
9秒前
9秒前
伯赏万天发布了新的文献求助10
9秒前
兴奋采梦完成签到,获得积分20
11秒前
12秒前
12秒前
0001发布了新的文献求助30
13秒前
13秒前
14秒前
所所应助vv采纳,获得10
15秒前
zhangfan发布了新的文献求助10
15秒前
魔幻灯泡发布了新的文献求助10
16秒前
丰富的灵枫完成签到,获得积分20
17秒前
17秒前
聪明的小李发布了新的文献求助200
17秒前
丘比特应助瓦力文采纳,获得10
18秒前
飲啖茶食個包应助JSM采纳,获得500
19秒前
酸萝卜发布了新的文献求助10
19秒前
授业解惑的哑铃完成签到,获得积分10
21秒前
Howe完成签到,获得积分10
22秒前
24秒前
科研通AI6应助内向连碧采纳,获得10
24秒前
含蓄的梦曼应助书晨采纳,获得10
25秒前
25秒前
27秒前
28秒前
28秒前
共享精神应助beituo采纳,获得10
31秒前
李健的小迷弟应助花卷儿采纳,获得10
32秒前
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247838
求助须知:如何正确求助?哪些是违规求助? 3780792
关于积分的说明 11870657
捐赠科研通 3433898
什么是DOI,文献DOI怎么找? 1884694
邀请新用户注册赠送积分活动 936290
科研通“疑难数据库(出版商)”最低求助积分说明 842172