Restoration of non-structural damaged murals in Shenzhen Bao’an based on a generator–discriminator network

鉴别器 图像复原 判别式 发电机(电路理论) 规范化(社会学) 计算机视觉 图像(数学) 编码器 壁画 计算机科学 人工智能 图像处理 电信 探测器 操作系统 物理 量子力学 艺术 社会学 视觉艺术 功率(物理) 绘画 人类学
作者
Jiao Li,Huan Wang,Zhiqin Deng,Mingtao Pan,Honghai Chen
出处
期刊:Heritage Science [Springer Science+Business Media]
卷期号:9 (1) 被引量:23
标识
DOI:10.1186/s40494-020-00478-w
摘要

Abstract Shenzhen is a modern metropolis, but it hides a variety of valuable cultural heritage, such as ancient murals. How to effectively preserve and repair the murals is a worthy of discussion question. Here, we propose a generation-discriminator network model based on artificial intelligence algorithms to perform digital image restoration of ancient damaged murals. In adversarial learning, this study optimizes the discriminative network model. First, the real mural images and damaged images are spliced together as input to the discriminator network. The network uses a 5-layer encoder unit to down-sample the 1024 × 1024 × 3 image to 32 × 32 × 256. Then, we connect a layer of ZeroPadding2D to expand the image to 34 × 34 × 256, and pass the Conv2D layer, down-sample to 31 × 31 × 256, perform batch normalization, and repeat the above steps to get a 30 × 30 × 1 matrix. Finally, this part of the loss is emphasized in the loss function as needed to improve the texture detail information of the image generated by the Generator. The experimental results show that compared with the traditional algorithm, the PSNR value of the algorithm proposed in this paper can be increased by 5.86 db at most. The SSIM value increased by 0.13. Judging from subjective vision. The proposed algorithm can effectively repair damaged murals with dot-like damage and complex texture structures. The algorithm we proposed may be helpful for the digital restoration of ancient murals, and may also provide reference for mural restoration workers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助darling采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得50
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
秦小荷完成签到,获得积分10
2秒前
2秒前
朱厚璁完成签到,获得积分10
2秒前
3秒前
3秒前
思源应助interventiongod采纳,获得10
4秒前
00完成签到 ,获得积分10
4秒前
qq关注了科研通微信公众号
5秒前
5秒前
高挑的思菱完成签到,获得积分10
6秒前
科研小黑发布了新的文献求助10
6秒前
冷艳馒头完成签到,获得积分10
7秒前
桐桐应助稳重诗珊采纳,获得10
7秒前
8秒前
森森发布了新的文献求助10
8秒前
江风海韵完成签到,获得积分10
8秒前
Owen应助府于杰采纳,获得10
8秒前
8秒前
11秒前
丘山发布了新的文献求助10
12秒前
12秒前
黄婷萱发布了新的文献求助10
12秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800