MondoA–Thioredoxin-Interacting Protein Axis Maintains Regulatory T-Cell Identity and Function in Colorectal Cancer Microenvironment

癌症研究 结直肠癌 功能(生物学) 肿瘤微环境 细胞生物学 身份(音乐) 硫氧还蛋白 癌症 化学 生物 基因 物理 遗传学 生物化学 声学
作者
Ying Lu,Yangyang Li,Qi Liu,Na Tian,Peng Du,Fangming Zhu,Yichao Han,Xinnan Liu,Xisheng Liu,Xiao Peng,Xiaoxia Wang,Yuchen Wu,Lingfeng Tong,Yakui Li,Yemin Zhu,Lifang Wu,Ping Zhang,Ye Xu,Hanbei Chen,Bin Li
出处
期刊:Gastroenterology [Elsevier]
卷期号:161 (2): 575-591.e16 被引量:79
标识
DOI:10.1053/j.gastro.2021.04.041
摘要

Background & AimsThe metabolic features and function of intratumoral regulatory T cells (Tregs) are ambiguous in colorectal cancer. Tumor-infiltrating Tregs are reprogrammed to exhibit high glucose-depleting properties and adapt to the glucose-restricted microenvironment. The glucose-responsive transcription factor MondoA is highly expressed in Tregs. However, the role of MondoA in colorectal cancer-infiltrating Tregs in response to glucose limitation remains to be elucidated.MethodsWe performed studies using mice, in which MondoA was conditionally deleted in Tregs, and human colorectal cancer tissues. Seahorse and other metabolic assays were used to assess Treg metabolism. To study the role of Tregs in antitumor immunity, we used a subcutaneous MC38 colorectal cancer model and induced colitis-associated colorectal cancer in mice by azoxymethane and dextran sodium sulfate.ResultsOur analysis of single-cell RNA sequencing data of patients with colorectal cancer revealed that intratumoral Tregs featured low activity of the MondoA–thioredoxin-interacting protein (TXNIP) axis and increased glucose uptake. Although MondoA-deficient Tregs were less immune suppressive and selectively promoted T-helper (Th) cell type 1 (Th1) responses in a subcutaneous MC38 tumor model, Treg-specific MondoA knockout mice were more susceptible to azoxymethane-DSS–induced colorectal cancer. Mechanistically, suppression of the MondoA-TXNIP axis promoted glucose uptake and glycolysis, induced hyperglycolytic Th17-like Tregs, which facilitated Th17 inflammation, promoted interleukin 17A-induced of CD8+ T-cell exhaustion, and drove colorectal carcinogenesis. Blockade of interleukin 17A reduced tumor progression and minimized the susceptibility of MondoA-deficient mice to colorectal carcinogenesis.ConclusionsThe MondoA-TXNIP axis is a critical metabolic regulator of Treg identity and function in the colorectal cancer microenvironment and a promising target for cancer therapy. The metabolic features and function of intratumoral regulatory T cells (Tregs) are ambiguous in colorectal cancer. Tumor-infiltrating Tregs are reprogrammed to exhibit high glucose-depleting properties and adapt to the glucose-restricted microenvironment. The glucose-responsive transcription factor MondoA is highly expressed in Tregs. However, the role of MondoA in colorectal cancer-infiltrating Tregs in response to glucose limitation remains to be elucidated. We performed studies using mice, in which MondoA was conditionally deleted in Tregs, and human colorectal cancer tissues. Seahorse and other metabolic assays were used to assess Treg metabolism. To study the role of Tregs in antitumor immunity, we used a subcutaneous MC38 colorectal cancer model and induced colitis-associated colorectal cancer in mice by azoxymethane and dextran sodium sulfate. Our analysis of single-cell RNA sequencing data of patients with colorectal cancer revealed that intratumoral Tregs featured low activity of the MondoA–thioredoxin-interacting protein (TXNIP) axis and increased glucose uptake. Although MondoA-deficient Tregs were less immune suppressive and selectively promoted T-helper (Th) cell type 1 (Th1) responses in a subcutaneous MC38 tumor model, Treg-specific MondoA knockout mice were more susceptible to azoxymethane-DSS–induced colorectal cancer. Mechanistically, suppression of the MondoA-TXNIP axis promoted glucose uptake and glycolysis, induced hyperglycolytic Th17-like Tregs, which facilitated Th17 inflammation, promoted interleukin 17A-induced of CD8+ T-cell exhaustion, and drove colorectal carcinogenesis. Blockade of interleukin 17A reduced tumor progression and minimized the susceptibility of MondoA-deficient mice to colorectal carcinogenesis. The MondoA-TXNIP axis is a critical metabolic regulator of Treg identity and function in the colorectal cancer microenvironment and a promising target for cancer therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
谦让溪灵完成签到,获得积分10
刚刚
刚刚
小肥发布了新的文献求助10
刚刚
1秒前
穿林打夜发布了新的文献求助10
1秒前
heoeh完成签到,获得积分10
1秒前
刻苦的小鸽子完成签到,获得积分10
2秒前
王朝阳完成签到 ,获得积分10
3秒前
3秒前
3秒前
wish完成签到,获得积分10
3秒前
4秒前
艳骨发布了新的文献求助10
4秒前
4秒前
归尘发布了新的文献求助10
5秒前
浮游应助一株多肉采纳,获得10
5秒前
彭于晏应助苗条的荧荧采纳,获得30
6秒前
CipherSage应助简单的小土豆采纳,获得30
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得30
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
fei应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
王瑞完成签到,获得积分10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
fei应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490022
求助须知:如何正确求助?哪些是违规求助? 4588767
关于积分的说明 14421095
捐赠科研通 4520527
什么是DOI,文献DOI怎么找? 2476762
邀请新用户注册赠送积分活动 1462234
关于科研通互助平台的介绍 1435102