图灵
分叉
有界函数
叠加原理
不稳定性
领域(数学分析)
数学
反应扩散系统
扩散
数学分析
物理
纯数学
非线性系统
量子力学
计算机科学
程序设计语言
作者
Weihua Jiang,Xun Cao,Chun-Cheng Wang
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2021-03-11
卷期号:27 (2): 1163-1163
被引量:8
标识
DOI:10.3934/dcdsb.2021085
摘要
<p style='text-indent:20px;'>In this article, Turing instability and the formations of spatial patterns for a general two-component reaction-diffusion system defined on 2D bounded domain, are investigated. By analyzing characteristic equation at positive constant steady states and further selecting diffusion rate <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula> and diffusion ratio <inline-formula><tex-math id="M2">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> as bifurcation parameters, sufficient and necessary conditions for the occurrence of Turing instability are established, which is called the first Turing bifurcation curve. Furthermore, parameter regions in which single-mode Turing patterns arise and multiple-mode (or superposition) Turing patterns coexist when bifurcations parameters are chosen, are described. Especially, the boundary of parameter region for the emergence of single-mode Turing patterns, consists of the first and the second Turing bifurcation curves which are given in explicit formulas. Finally, by taking diffusive Schnakenberg system as an example, parameter regions for the emergence of various kinds of spatially inhomogeneous patterns with different spatial frequencies and superposition Turing patterns, are estimated theoretically and shown numerically.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI