Microplastic detection in terrestrial systems using a classification on optical values and surface characteristics 

微塑料 壤土 高密度聚乙烯 土壤水分 淤泥 环境化学 低密度聚乙烯 总有机碳 聚乙烯 土工试验 污染 环境科学 材料科学 土壤科学 化学 复合材料 地质学 生态学 古生物学 生物
作者
Tabea Zeyer,Peter Fiener
标识
DOI:10.5194/egusphere-egu21-3051
摘要

<p>There is a growing concern that the steady increase in plastic production is leading to a substantial contamination of our environment with microplastic particles. While aquatic ecosystems are more and more studied, there is still a substantial lack in knowledge regrading terrestrial (mainly soil) system. This knowledge gap is partly related to the challenges to detect and analyses microplastic particles in soils. Firstly, it is difficult to extract microplastic from a matrix of organic and inorganic particles of similar size. Secondly, the well-established spectroscopic methods to detect microplastic in water samples are sensitive to organic material and are moreover very time consuming. Eliminating very stable organic particles (e.g. lignin) from soil samples without affecting the microplastic to be measured is hardly possible. Hence, a robust analytical approach is needed to tackle the microplastic detection in soils. In this study, we combine a density separation scheme, a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan) and a machine learning algorithm to classify and analyses microplastic particles in soil samples. For the analysis a silty loam (16% sand, 59% silt, 25% clay, 1.3% organic carbon) and a loamy sand (72% sand, 18% silt, 10% clay, 0.9% organic carbon) were spiked with different concentrations of high density Polyethylene (HDPE), low density Polyethylene (LDPE), Polystyrene (PS) and Polybutylene adipate terephthalate/Ploy lactic acid (PBAT/PLA) microplastic (HDPE 50 - 100 and 250 - 300 µm, LDPE <50 and 200 - 800 µm, PS <100 µm, PBAT/PLA < 2 mm). The classification with a machine learning algorithm is an essential data processing step to distinguishes between plastic, mineral as well as organic particles left after density separation. In case microplastic adopts the soil color, a combination of optical information and surface characteristics are used for a successful classification. Overall, the 3D Laser Scanning Confocal Microscopy in combination with a machine learning algorithm is a promising tool to detect, quantify and analyses microplastic in soils.</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼子轩完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得30
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
三里墩头应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
大橘发布了新的文献求助10
7秒前
提拉米草发布了新的文献求助10
8秒前
丁莞发布了新的文献求助10
10秒前
11秒前
李健的小迷弟应助HJJHJH采纳,获得10
11秒前
12秒前
隐形的雁完成签到,获得积分10
13秒前
王文静完成签到,获得积分10
15秒前
15秒前
犹豫的忆梅完成签到,获得积分10
15秒前
cancan谭小面完成签到,获得积分10
16秒前
16秒前
烟波钓客完成签到,获得积分10
17秒前
segovia_tju发布了新的文献求助10
17秒前
打打应助Dakerin2采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366