细胞因子信号抑制因子1
细胞因子信号抑制因子
SOCS3
先天免疫系统
免疫系统
SOCS2
细胞因子
信号转导
Toll样受体
抑制器
受体
细胞生物学
伤亡人数
免疫学
SOCS6系列
生物
基因
遗传学
车站3
作者
Andrea Baetz,Markus Frey,Klaus Heeg,Alexander H. Dalpke
标识
DOI:10.1074/jbc.m410992200
摘要
Suppressor of cytokine signaling (SOCS) proteins constitute a class of negative regulators for Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. These intracellular proteins are induced by cytokine signaling, but they can also be induced by stimulation of Toll-like receptors (TLR). It has even been suggested that SOCS proteins are important negative regulators of TLR signaling. Here we have elucidated the nature of the regulatory role of SOCS in TLR signaling. Induction of SOCS-3 and cytokine-inducible Src homology 2-containing protein (CIS) by TLR stimulation was strictly dependent on MyD88 but showed differing needs in case of SOCS-1. However, induction of SOCS proteins by TLR ligands was independent of type I interferon. In macrophages overexpressing SOCS, we were not able to observe an inhibitory effect of SOCS-1, SOCS-2, SOCS-3, or CIS on prototypical TLR target genes such as tumor necrosis factor-alpha. However, we found that TLR-2, TLR-3, TLR-4, and TLR-9 stimulation induced interferon-beta (IFN-beta), which is able to exert auto- and paracrine signaling, leading to the activation of secondary genes like IP-10. SOCS-1 and, to a lesser extent, SOCS-3 and CIS were able to inhibit this indirect signaling pathway following TLR stimulation, whereas neither MAP kinase nor NF kappa B signaling were affected. However, STAT-1 tyrosine phosphorylation following TLR triggering was severely impaired by SOCS-1 overexpression. Thus, our data suggest that SOCS proteins induced by TLR stimulation limit the extent of TLR signaling by inhibiting type I IFN signaling but not the main NF kappa B pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI