混合功能
离域电子
密度泛函理论
锐钛矿
电子结构
材料科学
电子
凝聚态物理
带隙
空位缺陷
原子物理学
化学
计算化学
物理
量子力学
光催化
催化作用
有机化学
生物化学
作者
Emanuele Finazzi,Cristiana Di Valentin,Gianfranco Pacchioni,Annabella Selloni
摘要
The removal of lattice O atoms, as well as the addition of interstitial H atoms, in TiO(2) is known to cause the reduction in the material and the formation of "Ti(3+)" ions. By means of electronic structure calculations we have studied the nature of such oxygen vacancy and hydrogen impurity states in the bulk of the anatase polymorph of TiO(2). The spin polarized nature of these centers, the localized or delocalized character of the extra electrons, the presence of defect-induced states in the gap, and the polaronic distortion around the defect have been investigated with different theoretical methods: standard density functional theory (DFT) in the generalized-gradient approximation (GGA), GGA+U methods as a function of the U parameter, and two hybrid functionals with different admixtures of Hartree-Fock exchange. The results are found to be strongly dependent on the method used. Only GGA+U or hybrid functionals are able to reproduce the presence of states at about 1 eV below the conduction band, which are experimentally observed in reduced titania. The corresponding electronic states are localized on Ti 3d levels, but partly delocalized solutions are very close in energy. These findings show the limited predictive power of these theoretical methods to describe the electronic structure of reduced titania in the absence of accurate experimental data.
科研通智能强力驱动
Strongly Powered by AbleSci AI