An interval-valued intuitionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making

群体决策 独立性(概率论) 数学 公理 区间(图论) 模糊逻辑 组分(热力学) 计算机科学 数据挖掘 人工智能 数学优化 统计 组合数学 法学 物理 热力学 政治学 几何学
作者
Bingsheng Liu,Yinghua Shen,Wei Zhang,Xiaohong Chen,Xueqing Wang
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:245 (1): 209-225 被引量:148
标识
DOI:10.1016/j.ejor.2015.02.025
摘要

The complex multi-attribute large-group decision-making problems that are based on interval-valued intuitionistic fuzzy information have become a common topic of research in the field of decision-making. Due to the complexity of this kind of problem, alternatives are usually described by multiple attributes that exhibit a high degree of interdependence or interactivity. In addition, decision makers tend to be derived from different interest groups, which cause the assumption of independence between the decision maker preferences in the same interest group to be violated. Because traditional aggregation operators are proposed based on the independence axiom, directly applying these operators to the information aggregation process in the complex multi-attribute large-group decision-making problem is not appropriate. Although these operators can obtain the overall evaluation value of each alternative, the results may be biased. Therefore, we draw the thought from the conventional principal component analysis model and propose the interval-valued intuitionistic fuzzy principal component analysis model. Based on this new model, we provide a decision-making method for the complex multi-attribute large-group decision-making problem. First, we treat the attributes and the decision makers as interval-valued intuitionistic fuzzy variables, and we transform these two types of variables into several independent variables using the proposed principal component analysis model. We then obtain each alternative's overall evaluation value by utilizing conventional information aggregation operators. Moreover, we obtain the optimal alternative(s) based on the ranks of the alternative overall evaluation values. An illustrative example is provided to demonstrate the proposed technique and evaluate its feasibility and validity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨水箅发布了新的文献求助10
2秒前
showitt完成签到,获得积分10
3秒前
4秒前
完美世界应助文龙采纳,获得10
4秒前
打打应助Aoren采纳,获得10
5秒前
5秒前
6秒前
8秒前
lele_233应助科研通管家采纳,获得20
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
不配.应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得20
9秒前
9秒前
lxyy应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得20
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
10秒前
7_蜗牛应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
CipherSage应助new采纳,获得10
11秒前
FFFFFFF完成签到,获得积分10
11秒前
Isabelxin_发布了新的文献求助10
12秒前
Tracy完成签到,获得积分10
12秒前
14秒前
yongjie发布了新的文献求助10
14秒前
nico发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4637150
求助须知:如何正确求助?哪些是违规求助? 4031199
关于积分的说明 12472631
捐赠科研通 3718065
什么是DOI,文献DOI怎么找? 2052070
邀请新用户注册赠送积分活动 1083271
科研通“疑难数据库(出版商)”最低求助积分说明 965205