Current Understanding and Future Directions for Vocal Fold Mechanobiology.

折叠(高阶函数) 电流(流体)
作者
Nicole Y. K. Li,Hossein K. Heris,Luc Mongeau
出处
期刊:Journal of cytology & molecular biology [Avens Publishing Group]
卷期号:1 (1): 001-001 被引量:16
标识
DOI:10.13188/2325-4653.1000001
摘要

The vocal folds, which are located in the larynx, are the main organ of voice production for human communication. The vocal folds are under continuous biomechanical stress similar to other mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a few millimeters. The biomechanical stress associated with accumulated phonation is believed to alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can damage tissue structure and induce a cell-mediated inflammatory response, resulting in a pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically for patients with mild vocal fold injuries. Although biomechanical forces affect vocal fold physiology and pathology, there is little understanding of how mechanical forces regulate these processes at the cellular and molecular level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal fold bioreactors are being developed in several laboratories to provide a biomimic environment that allows the systematic manipulation of physical and biological factors on the cells of interest in vitro. Computer models have been used to simulate the integrated response of cells and proteins as a function of phonation stress. The purpose of this paper is to review current research on the mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to propose specific research directions that will advance our understanding of this subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
gjww应助宝哥采纳,获得50
1秒前
ding应助冯冯采纳,获得10
1秒前
keep发布了新的文献求助10
6秒前
小区保安完成签到,获得积分10
6秒前
9秒前
11秒前
keep完成签到,获得积分10
12秒前
Tang完成签到,获得积分10
12秒前
圣灵hot完成签到,获得积分10
13秒前
认真代曼发布了新的文献求助10
13秒前
恐龙扛狼完成签到,获得积分10
13秒前
15秒前
16秒前
看不了一点文献应助Tang采纳,获得20
16秒前
17秒前
slazz01完成签到 ,获得积分10
18秒前
冯冯发布了新的文献求助10
18秒前
研友_VZG7GZ应助权香露采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
玉婷发布了新的文献求助10
21秒前
娜行完成签到 ,获得积分10
23秒前
成就薯片完成签到,获得积分10
24秒前
小熊饼干完成签到,获得积分10
25秒前
冯冯完成签到,获得积分10
25秒前
yang发布了新的文献求助10
25秒前
不言完成签到,获得积分10
26秒前
27秒前
年轻的凌柏完成签到 ,获得积分10
28秒前
aowu发布了新的文献求助30
28秒前
30秒前
31秒前
仧目一叶完成签到 ,获得积分10
32秒前
33秒前
33秒前
36秒前
38秒前
高分求助中
Bioinspired Catalysis with Biomimetic Clusters 1000
Work hardening in tension and fatigue : proceedings of a symposium, Cincinnati, Ohio, November 11, 1975 1000
Teaching Social and Emotional Learning in Physical Education 900
The Instrument Operations and Calibration System for TerraSAR-X 800
Lexique et typologie des poteries: pour la normalisation de la description des poteries (Full Book) 400
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 400
Transformerboard III 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2351214
求助须知:如何正确求助?哪些是违规求助? 2057128
关于积分的说明 5125396
捐赠科研通 1787662
什么是DOI,文献DOI怎么找? 893061
版权声明 557070
科研通“疑难数据库(出版商)”最低求助积分说明 476401