Measuring inconsistency in meta-analyses

计算机科学 情报检索 万维网 数据科学
作者
Julian P. T. Higgins,Simon G. Thompson,Jonathan J Deeks,Douglas G. Altman
出处
期刊:BMJ [BMJ]
卷期号:327 (7414): 557-560 被引量:56088
标识
DOI:10.1136/bmj.327.7414.557
摘要

Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NB完成签到,获得积分10
1秒前
给我个二硫碘化钾完成签到,获得积分10
1秒前
happyou完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
哆啦顺利毕业完成签到 ,获得积分10
4秒前
义气的羽毛完成签到,获得积分10
4秒前
小绵羊发布了新的文献求助10
5秒前
lizzz完成签到,获得积分10
6秒前
Lion完成签到,获得积分20
7秒前
8秒前
研友_VZG7GZ应助蓝华采纳,获得10
8秒前
Nn1发布了新的文献求助10
8秒前
sha7dow发布了新的文献求助10
8秒前
du完成签到 ,获得积分10
8秒前
10秒前
赘婿应助自由的凝竹采纳,获得10
11秒前
隐逸者完成签到,获得积分10
13秒前
午餐肉完成签到,获得积分10
14秒前
hoijuon应助深情的牛排采纳,获得10
15秒前
mahehivebv111完成签到,获得积分10
16秒前
18秒前
上官若男应助viva采纳,获得10
19秒前
21秒前
22秒前
23秒前
23秒前
LGJ完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
小李发布了新的文献求助10
26秒前
天明完成签到,获得积分10
27秒前
Orange应助Zoeeey采纳,获得10
27秒前
蜘猪侠zx发布了新的文献求助10
29秒前
李小新完成签到 ,获得积分10
30秒前
Lion发布了新的文献求助10
30秒前
30秒前
NexusExplorer应助小胖头行采纳,获得10
35秒前
Goes发布了新的文献求助10
36秒前
bkagyin应助Huang采纳,获得10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224827
求助须知:如何正确求助?哪些是违规求助? 3758177
关于积分的说明 11813196
捐赠科研通 3419825
什么是DOI,文献DOI怎么找? 1876919
邀请新用户注册赠送积分活动 930338
科研通“疑难数据库(出版商)”最低求助积分说明 838581