Community detection in graphs

聚类分析 阐述(叙述) 星团(航天器) 介绍(产科) 光学(聚焦) 数据科学 相关性(法律) 理论计算机科学 物理 计算机科学 人工智能 医学 艺术 文学类 法学 政治学 光学 放射科 程序设计语言
作者
Santo Fortunato
出处
期刊:Physics Reports [Elsevier BV]
卷期号:486 (3-5): 75-174 被引量:8587
标识
DOI:10.1016/j.physrep.2009.11.002
摘要

The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
方方完成签到,获得积分10
刚刚
啦啦啦完成签到,获得积分10
刚刚
1秒前
所所应助FLY采纳,获得10
1秒前
tsyanikmo发布了新的文献求助50
2秒前
4秒前
4秒前
七安发布了新的文献求助10
7秒前
9秒前
扫地888完成签到 ,获得积分10
9秒前
X1关注了科研通微信公众号
11秒前
12秒前
搞怪凡波发布了新的文献求助10
13秒前
NexusExplorer应助缓慢谷云采纳,获得10
13秒前
YamDaamCaa应助健壮涵柳采纳,获得30
15秒前
18秒前
雪白扬发布了新的文献求助10
19秒前
strug783完成签到,获得积分10
20秒前
直率的柚子完成签到,获得积分10
20秒前
杜杜发布了新的文献求助10
22秒前
qweqwe完成签到 ,获得积分10
22秒前
李故发布了新的文献求助10
23秒前
24秒前
Lucas应助zdl采纳,获得10
24秒前
岳苏佳发布了新的文献求助10
24秒前
脑洞疼应助怦然采纳,获得10
24秒前
InaZheng发布了新的文献求助30
25秒前
风清扬应助爱学习的曼卉采纳,获得30
25秒前
25秒前
风清扬应助爱学习的曼卉采纳,获得30
25秒前
lj发布了新的文献求助10
27秒前
28秒前
英姑应助厉害采纳,获得10
28秒前
Anker完成签到,获得积分10
29秒前
29秒前
酷波er应助杜杜采纳,获得10
29秒前
30秒前
X1发布了新的文献求助30
30秒前
充电宝应助跳跃虔采纳,获得10
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079331
求助须知:如何正确求助?哪些是违规求助? 3618642
关于积分的说明 11484460
捐赠科研通 3335016
什么是DOI,文献DOI怎么找? 1833255
邀请新用户注册赠送积分活动 902532
科研通“疑难数据库(出版商)”最低求助积分说明 821125