ABGD, Automatic Barcode Gap Discovery for primary species delimitation

生物 条形码 进化生物学 小学(天文学) 谱系学 计算机科学 天文 历史 操作系统 物理
作者
Nicolas Puillandre,Amaury Lambert,Sophie Brouillet,Guillaume Achaz
出处
期刊:Molecular Ecology [Wiley]
卷期号:21 (8): 1864-1877 被引量:3169
标识
DOI:10.1111/j.1365-294x.2011.05239.x
摘要

Abstract Within uncharacterized groups, DNA barcodes, short DNA sequences that are present in a wide range of species, can be used to assign organisms into species. We propose an automatic procedure that sorts the sequences into hypothetical species based on the barcode gap, which can be observed whenever the divergence among organisms belonging to the same species is smaller than divergence among organisms from different species. We use a range of prior intraspecific divergence to infer from the data a model‐based one‐sided confidence limit for intraspecific divergence. The method, called Automatic Barcode Gap Discovery (ABGD), then detects the barcode gap as the first significant gap beyond this limit and uses it to partition the data. Inference of the limit and gap detection are then recursively applied to previously obtained groups to get finer partitions until there is no further partitioning. Using six published data sets of metazoans, we show that ABGD is computationally efficient and performs well for standard prior maximum intraspecific divergences (a few per cent of divergence for the five data sets), except for one data set where less than three sequences per species were sampled. We further explore the theoretical limitations of ABGD through simulation of explicit speciation and population genetics scenarios. Our results emphasize in particular the sensitivity of the method to the presence of recent speciation events, via (unrealistically) high rates of speciation or large numbers of species. In conclusion, ABGD is fast, simple method to split a sequence alignment data set into candidate species that should be complemented with other evidence in an integrative taxonomic approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
z7777777发布了新的文献求助10
1秒前
TY发布了新的文献求助10
1秒前
浮游应助KcNco采纳,获得10
2秒前
4秒前
子车茗应助海英采纳,获得20
4秒前
4秒前
bkagyin应助骑猪看日落采纳,获得10
4秒前
闪闪的善斓完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
和平鸽完成签到 ,获得积分10
7秒前
洽洽你个哈密瓜关注了科研通微信公众号
7秒前
大模型应助coffee采纳,获得10
8秒前
8秒前
PC发布了新的文献求助10
9秒前
俏皮不可发布了新的文献求助10
9秒前
koreyoushi发布了新的文献求助10
9秒前
9秒前
若尘发布了新的文献求助10
9秒前
隐形曼青应助诚心洙采纳,获得30
11秒前
11秒前
Tian0118发布了新的文献求助10
12秒前
猴王完成签到,获得积分10
12秒前
TY完成签到,获得积分10
12秒前
科研狗完成签到,获得积分10
12秒前
顾矜应助DG采纳,获得10
13秒前
15秒前
16秒前
善学以致用应助PC采纳,获得10
16秒前
传奇3应助aaaaaa利路亚采纳,获得10
17秒前
18秒前
渡月桥完成签到,获得积分10
18秒前
19秒前
天天快乐应助kun采纳,获得10
19秒前
谦逊的饼发布了新的文献求助30
20秒前
20秒前
温婉的凝芙完成签到 ,获得积分10
20秒前
蓝胖子完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560