Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2

电催化剂 直接乙醇燃料电池 氧化剂 催化作用 材料科学 乙醇燃料 酒精燃料 化学工程 乙醇 无机化学 甲醇 化学 铂金 电化学 三元运算 质子交换膜燃料电池 有机化学 电极 物理化学 工程类 程序设计语言 计算机科学
作者
A. Kowal,M. Li,Minhua Shao,Kotaro Sasaki,Miomir B. Vukmirovic,Junliang Zhang,Nebojša Marinković,P. Liu,Anatoly I. Frenkel,Radoslav R. Adžić
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:8 (4): 325-330 被引量:752
标识
DOI:10.1038/nmat2359
摘要

The development of a direct ethanol fuel cell has been hampered by ethanol’s inefficient and slow oxidation. A ternary electrocatalyst consisting of platinum and rhodium deposited on carbon-supported tin dioxide nanoparticles is now shown to oxidize ethanol to carbon dioxide with high efficiency by splitting C–C bonds at room temperature. Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol’s slow, inefficient oxidation even at the best electrocatalysts1,2. We synthesized a ternary PtRhSnO2/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C–C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO2, which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst’s activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt–Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C–C bond splitting in other catalytic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助yuyuyuan采纳,获得10
刚刚
123稻稻人完成签到 ,获得积分10
2秒前
七月发布了新的文献求助10
2秒前
Kathy完成签到,获得积分10
5秒前
jingjing完成签到 ,获得积分10
5秒前
不安溪灵完成签到,获得积分10
8秒前
ann完成签到,获得积分10
10秒前
独特语琴发布了新的文献求助10
10秒前
11秒前
wanci应助七月采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
21秒前
21秒前
彭于晏应助XIXI采纳,获得10
23秒前
orixero应助sue401采纳,获得10
24秒前
xiong完成签到 ,获得积分10
24秒前
小柒柒完成签到,获得积分10
24秒前
杰克李李完成签到,获得积分10
24秒前
24秒前
欢呼的凌兰完成签到,获得积分10
26秒前
123完成签到,获得积分10
27秒前
27秒前
情怀应助独特语琴采纳,获得10
29秒前
研友_O8Wz4Z发布了新的文献求助200
30秒前
darkpigx完成签到,获得积分10
30秒前
香蕉觅云应助自觉紫安采纳,获得10
30秒前
伶俐白凝完成签到 ,获得积分10
33秒前
35秒前
东风徐来完成签到,获得积分10
36秒前
37秒前
37秒前
puheshengwu完成签到,获得积分10
38秒前
38秒前
39秒前
小闵发布了新的文献求助10
39秒前
俭朴自中完成签到,获得积分10
40秒前
言午完成签到,获得积分10
40秒前
桐桐应助背后老六采纳,获得10
40秒前
彭于晏应助puheshengwu采纳,获得10
42秒前
sue401发布了新的文献求助10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757