A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction

超参数 健康状况 可靠性(半导体) 荷电状态 计算机科学 电压 过程(计算) 人口 可靠性工程 人工智能 功率(物理) 工程类 电池(电) 物理 社会学 人口学 电气工程 操作系统 量子力学
作者
Yan Ma,Ce Shan,Jinwu Gao,Hong Chen
出处
期刊:Energy [Elsevier BV]
卷期号:251: 123973-123973 被引量:151
标识
DOI:10.1016/j.energy.2022.123973
摘要

State of health (SOH) is a crucial challenge to guarantee the reliability and safety of the electric vehicles (EVs), due to the complex aging mechanism. A novel SOH estimation method based on improved long short-term memory (LSTM) and health indicators (HIs) extraction from charging-discharging process is proposed in this paper. In order to overcome the limitation of the measurement of battery capacity in real application, some external characteristic parameters related to voltage, current and temperature are selected from charging-discharging process as HIs to describe the aging mechanism of the batteries. After that, Pearson correlation coefficient is employed to select the HIs, which have high correlations with battery capacity. And neighborhood component analysis (NCA) is used to eliminate redundant information of HIs with high correlation in order to reduce computational burden. Aiming at the problem of hyperparameter selection in LSTM models, differential evolution grey wolf optimizer (DEGWO) is proposed in this paper for hyperparameters optimization. Compared with traditional grey wolf optimizer, which is easy to fall into local optimality, DEGWO updates the population through mutation, crossover and screening operations to obtain the global optimal solution and improve the global search ability. The proposed method is verified based on the dataset of the battery from NASA and MIT. The simulations indicate that the proposed method has higher accuracy for different kinds of batteries. The estimation errors for both datasets are within 1%. Compared with other methods, the estimation evaluation indicators such as RMSE, MAE and MAPE of the proposed method are within 1%, which is much less than the estimation results obtained by other methods. And determination coefficient R2 is above 0.95, which means the proposed method has batter fitting performance. It is also indicated that the method proposed in this paper has higher accuracy, better robustness and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
竹筏过海应助Yinbo采纳,获得30
2秒前
Orange应助竹林采纳,获得10
3秒前
ssss发布了新的文献求助10
3秒前
享文完成签到,获得积分10
6秒前
科研助手6应助香山叶正红采纳,获得10
6秒前
诸葛藏藏发布了新的文献求助10
7秒前
小二郎应助无奈曼云采纳,获得10
7秒前
史小霜发布了新的文献求助10
8秒前
单薄千青完成签到,获得积分10
8秒前
9秒前
LinglongCai完成签到 ,获得积分10
9秒前
12秒前
13秒前
田様应助lucky采纳,获得10
16秒前
乐观绮露发布了新的文献求助10
16秒前
17秒前
18秒前
互助互惠互通完成签到,获得积分10
19秒前
20秒前
XieQinxie发布了新的文献求助10
21秒前
科研小白发布了新的文献求助10
21秒前
华仔应助静香采纳,获得10
22秒前
尊敬的半梅完成签到 ,获得积分10
24秒前
固的曼发布了新的文献求助10
25秒前
3542002发布了新的文献求助10
25秒前
风中的向卉完成签到 ,获得积分10
25秒前
27秒前
27秒前
29秒前
30秒前
31秒前
ShawnLyu应助笨笨凡松采纳,获得10
31秒前
无奈曼云发布了新的文献求助10
32秒前
山水有佳完成签到,获得积分20
32秒前
32秒前
斯文败类应助科研小白采纳,获得10
32秒前
Beebee24发布了新的文献求助10
33秒前
EmmaLin发布了新的文献求助10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800229
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325604
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547