CT-based radiomics for the preoperative prediction of the muscle-invasive status of bladder cancer and comparison to radiologists' assessment

无线电技术 医学 接收机工作特性 放射科 置信区间 膀胱癌 曲线下面积 核医学 癌症 内科学
作者
Yingpu Cui,Zepang Sun,X. Liu,X. Zhang,X. Wang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:77 (6): e473-e482 被引量:15
标识
DOI:10.1016/j.crad.2022.02.019
摘要

To develop a radiomics model to predict the muscle-invasive status of bladder cancer (BC) in contrast-enhanced computed tomography (CECT) images, compared with radiologists' interpretations.One hundred and eighty-eight CECT images with histopathologically confirmed BC were retrieved retrospectively from November 2018 to December 2019 and were divided randomly into the training (n=120) and test dataset (n=68). The BC were annotated manually and validated on the venous phase by a general radiologist and an experienced radiologist, respectively. The radiomics analysis included radiomics feature extraction and model development. The same images were also evaluated by two radiologists. The diagnostic performance of radiomics was evaluated using receiver operating characteristic (ROC) curve analysis and the area under the ROC curve (AUC), sensitivity, and specificity were calculated. The predictive performance of radiomics was then compared to visual assessments of the two radiologists.The radiomics model reached an AUC (95% confidence interval [CI]) of 0.979 (0.935-0.996) and 0.894 (0.796-0.956) in the training and test dataset, respectively. The radiomics model outperformed the visual assessment of radiologist A and B both in the training (0.865 [0.791-0.921], 0.894 [0.824-0.943]) and test dataset (0.766 [0.647-0.860], 0.826 [0.715-0.907]). Pairwise comparisons showed that the specificities of the radiomics model were higher than the radiologists (85.3-96.7% versus 47.1-58.3%, all p<0.05), but the sensitivities were comparable between the radiomics and the radiologists (79.4-90% versus 91.2-96.7%; all p>0.05).A radiomics model was developed that outperformed the radiologists' visual assessment in predicting the muscle-invasive status of BC in the venous phase of CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
彭于晏应助快乐的鱼采纳,获得10
7秒前
9秒前
652183758完成签到 ,获得积分10
10秒前
kkkl完成签到,获得积分10
10秒前
勤恳完成签到,获得积分10
11秒前
11秒前
qiao应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得20
13秒前
领导范儿应助科研通管家采纳,获得30
13秒前
Owen应助科研通管家采纳,获得30
13秒前
酷波er应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
iNk应助科研通管家采纳,获得20
14秒前
FashionBoy应助科研通管家采纳,获得30
14秒前
14秒前
14秒前
14秒前
14秒前
啦啦啦啦发布了新的文献求助10
14秒前
14秒前
天天完成签到,获得积分10
15秒前
16秒前
一诺相许完成签到 ,获得积分10
17秒前
清清完成签到,获得积分20
18秒前
天天发布了新的文献求助10
19秒前
19秒前
19秒前
清清发布了新的文献求助10
21秒前
23秒前
无私的蛋挞完成签到,获得积分10
23秒前
吕宝宝完成签到,获得积分10
23秒前
cdercder应助标致的幼菱采纳,获得10
24秒前
在水一方应助ShiRz采纳,获得10
24秒前
梁其杰完成签到,获得积分10
27秒前
28秒前
无解完成签到,获得积分10
29秒前
朴素的大树完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304