The differential diagnosis of IgG4-related disease based on machine learning

医学 接收机工作特性 随机森林 决策树 鉴别诊断 考试(生物学) 曲线下面积 血液检验 专业 内科学 人工智能 机器学习 病理 计算机科学 古生物学 生物
作者
Motohisa Yamamoto,Masanori Nojima,Ryuta Kamekura,Akiko Kuribara-Souta,Masaaki Uehara,Hiroki Yamazaki,Noritada Yoshikawa,Satsuki Aochi,Ichiro Mizushima,Takayuki Watanabe,Aya Nishiwaki,Toshihiko Komai,Hirofumi Shoda,Koji Kitagori,Hajime Yoshifuji,Hideaki Hamano,Mitsuhiro Kawano,Kenichi Takano,Keishi Fujio,Hirotoshi Tanaka
出处
期刊:Arthritis Research & Therapy [BioMed Central]
卷期号:24 (1) 被引量:4
标识
DOI:10.1186/s13075-022-02752-7
摘要

Abstract Introduction To eliminate the disparity and maldistribution of physicians and medical specialty services, the development of diagnostic support for rare diseases using artificial intelligence is being promoted. Immunoglobulin G4 (IgG4)-related disease (IgG4-RD) is a rare disorder often requiring special knowledge and experience to diagnose. In this study, we investigated the possibility of differential diagnosis of IgG4-RD based on basic patient characteristics and blood test findings using machine learning. Methods Six hundred and two patients with IgG4-RD and 204 patients with non-IgG4-RD that needed to be differentiated who visited the participating institutions were included in the study. Ten percent of the subjects were randomly excluded as a validation sample. Among the remaining cases, 80% were used as training samples, and the remaining 20% were used as test samples. Finally, validation was performed on the validation sample. The analysis was performed using a decision tree and a random forest model. Furthermore, a comparison was made between conditions with and without the serum IgG4 concentration. Accuracy was evaluated using the area under the receiver-operating characteristic (AUROC) curve. Results In diagnosing IgG4-RD, the AUROC curve values of the decision tree and the random forest method were 0.906 and 0.974, respectively, when serum IgG4 levels were included in the analysis. Excluding serum IgG4 levels, the AUROC curve value of the analysis by the random forest method was 0.925. Conclusion Based on machine learning in a multicenter collaboration, with or without serum IgG4 data, basic patient characteristics and blood test findings alone were sufficient to differentiate IgG4-RD from non-IgG4-RD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
张明发布了新的文献求助10
2秒前
2秒前
小天才儿童手表完成签到,获得积分10
3秒前
YangLi完成签到,获得积分10
3秒前
迷路雨竹发布了新的文献求助10
4秒前
平淡的洪纲完成签到,获得积分10
4秒前
欢喜的绿竹完成签到,获得积分10
4秒前
野心优雅发布了新的文献求助10
5秒前
5秒前
dazhi完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助joseph采纳,获得30
6秒前
芋你呀发布了新的文献求助10
8秒前
8秒前
8秒前
小阙丢完成签到,获得积分20
9秒前
huihui完成签到 ,获得积分10
9秒前
10秒前
PU聚氨酯完成签到,获得积分10
11秒前
可靠的亦竹完成签到 ,获得积分10
12秒前
功不唐捐发布了新的文献求助10
13秒前
13秒前
房天川发布了新的文献求助10
13秒前
17秒前
17秒前
李健的粉丝团团长应助TaoJ采纳,获得10
18秒前
打打应助多情怜蕾采纳,获得10
18秒前
小阙丢发布了新的文献求助30
18秒前
KKKKKKK完成签到 ,获得积分10
22秒前
xinxinsci发布了新的文献求助10
22秒前
拾陆完成签到,获得积分10
23秒前
加缪驳回了Hananx应助
23秒前
24秒前
赫连烙发布了新的文献求助10
25秒前
朴实子骞完成签到 ,获得积分10
26秒前
陌shang应助李正安采纳,获得20
26秒前
JamesPei应助房天川采纳,获得10
27秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751805
求助须知:如何正确求助?哪些是违规求助? 4097093
关于积分的说明 12676505
捐赠科研通 3809744
什么是DOI,文献DOI怎么找? 2103432
邀请新用户注册赠送积分活动 1128592
关于科研通互助平台的介绍 1005521