Electrocardiography-Based Prediction of Sudden Cardiac Death in Heart Failure Patients: Application of Artificial Intelligence

医学 内科学 射血分数 心力衰竭 心脏病学 心源性猝死 接收机工作特性 心电图 前瞻性队列研究 植入式心律转复除颤器
作者
Yasuyuki Shiraishi,Shinichi Goto,Nozomi Niimi,Yoshinori Katsumata,Ayumi Goda,Makoto Takei,Mike Saji,Yosuke Nishihata,Motoaki Sano,Keiichi Fukuda,Takashi Kohno,Tsutomu Yoshikawa,Shun Kohsaka
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2022.03.20.22272659
摘要

ABSTRACT Background Although predicting sudden cardiac death (SCD) in patients with heart failure (HF) is critical, the current predictive model is suboptimal. Electrocardiography-based artificial intelligence (ECG-AI) algorithms may better stratify risk. We assessed whether the ECG-AI index established here could better predict SCD in HF and whether the ECG-AI index and conventional predictors of SCD can improve SCD stratification. Methods In a prospective observational study, four tertiary care hospitals in metropolitan Tokyo that enrolled 2,559 patients hospitalized with HF who were successfully discharged after acute decompensation. ECG data collected during the index hospitalization were extracted from the hospitals’ electronic medical record systems. The ECG-AI index is the output from an AI model that was trained to predict the risk of SCD based on ECG input. The association between ECG-AI index and SCD was evaluated with adjustment for left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) class, and competing risk of non-SCD. The outcome measure was a composite of SCD and implantable cardioverter-defibrillator activation. The ECG-AI index was established using a derivation (hospital A) and validation cohort (hospital B), and its ability was evaluated in a test cohort (hospitals C and D). Results The ECG-AI index plus classical predictive guidelines (i.e., LVEF ≤ 35%, NYHA class II–III) significantly improved the discriminative value of SCD (area under the receiver operating characteristic curve, 0.66 vs. 0.59; p=0.017; Delong’s test) with good calibration (p=0.11; Hosmer–Lemeshow test) and improved net reclassification (36%; 95% confidence interval, 9%–64%; p=0.009). The Fine-Gray model considering the competing risk of non-SCD demonstrated that the ECG-AI index was independently associated with SCD (adjusted sub-distributional hazard ratio, 1.25; 95% confidence interval, 1.04–1.49; p=0.015). An increased proportional risk of SCD vs. non-SCD with increasing ECG-AI index was also observed (low, 16.7%; intermediate, 18.5%; high, 28.7% risk; p for trend = 0.023). Similar findings were observed in patients aged ≤75 years with a non-ischemic etiology and an LVEF >35%. Conclusions Among patients with HF, ECG-based AI significantly improved the SCD risk stratification compared to the conventional indication for implantable cardioverter-defibrillators inclusive of LVEF and NYHA class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助JxJ采纳,获得10
1秒前
2秒前
典雅的纸飞机完成签到 ,获得积分10
8秒前
小蘑菇应助wxyes采纳,获得10
9秒前
美丽的依琴完成签到,获得积分10
9秒前
SXR完成签到,获得积分10
11秒前
11秒前
简单澜完成签到,获得积分10
11秒前
科研通AI2S应助玄轩采纳,获得10
12秒前
xzy998应助zzz采纳,获得10
14秒前
zrs发布了新的文献求助10
17秒前
Steven完成签到,获得积分10
17秒前
科研通AI5应助zxy采纳,获得10
18秒前
21秒前
在水一方应助zrs采纳,获得10
23秒前
YYY666完成签到,获得积分10
23秒前
RXY完成签到,获得积分10
24秒前
我是125完成签到,获得积分10
24秒前
Bryce完成签到 ,获得积分10
26秒前
修辛发布了新的文献求助10
27秒前
活力的泥猴桃完成签到 ,获得积分10
28秒前
机灵雨完成签到 ,获得积分10
29秒前
汉堡包应助简单澜采纳,获得10
29秒前
32秒前
慕青应助zty123采纳,获得10
33秒前
kkj完成签到,获得积分10
33秒前
34秒前
MoCh发布了新的文献求助10
35秒前
周欣完成签到 ,获得积分10
36秒前
38秒前
40秒前
40秒前
九月清晨发布了新的文献求助10
41秒前
晨曦完成签到,获得积分10
41秒前
好大一个赣宝完成签到,获得积分10
42秒前
修辛发布了新的文献求助10
42秒前
46秒前
49秒前
49秒前
子寒完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304