摘要
Future MicrobiologyVol. 17, No. 5 EditorialChallenges and advances in the diagnosis of bloodstream infectionYajing Song, Michael Neff & Peter GyarmatiYajing SongCancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA, Michael NeffCancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA & Peter Gyarmati *Author for correspondence: E-mail Address: gyarmati@uic.eduhttps://orcid.org/0000-0001-7362-316XCancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USAPublished Online:17 Feb 2022https://doi.org/10.2217/fmb-2021-0304AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: blood culturebloodstream infectionhigh-throughput sequencingmetagenomicsmolecular detectionReferences1. Liesenfeld O, Lehman L, Hunfeld KP, Kost G. Molecular diagnosis of sepsis: new aspects and recent developments. Eur. J. Microbiol. Immunol. 4(1), 1–25 (2014).Crossref, Medline, CAS, Google Scholar2. Dinan MA, Hirsch BR, Lyman GH. Management of chemotherapy-induced neutropenia: measuring quality, cost, and value. J. Natl Compr. Canc. Netw. 13(1), 1–7 (2015).Crossref, Medline, Google Scholar3. Fleischmann C, Scherag A, Adhikari NK et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med. 193(3), 259–272 (2016).Crossref, Medline, CAS, Google Scholar4. Battle SE, Bookstaver PB, Justo JA, Kohn J, Albrecht H, Al-Hasan MN. Association between inappropriate empirical antimicrobial therapy and hospital length of stay in Gram-negative bloodstream infections: stratification by prognosis. J. Antimicrob. Chemother. 72(1), 299–304 (2017).Crossref, Medline, CAS, Google Scholar5. Garcia-Vidal C, Cardozo-Espinola C, Puerta-Alcalde P et al. Risk factors for mortality in patients with acute leukemia and bloodstream infections in the era of multiresistance. PLoS ONE 13(6), e0199531 (2018).Crossref, Medline, Google Scholar6. Ammerlaan HS, Harbarth S, Buiting AG et al. Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clin. Infect. Dis. 56(6), 798–805 (2013).Crossref, Medline, CAS, Google Scholar7. Paul M, Kariv G, Goldberg E et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J. Antimicrob. Chemother. 65(12), 2658–2665 (2010).Crossref, Medline, CAS, Google Scholar8. Ohrmalm L, Wong M, Aust C et al. Viral findings in adult hematological patients with neutropenia. PLoS ONE 7(5), e36543 (2012).Crossref, Medline, Google Scholar9. Gyarmati P, Kjellander C, Aust C, Song Y, Öhrmalm L, Giske CG. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Sci. Rep. 6, 23532 (2016).Crossref, Medline, CAS, Google Scholar10. Grumaz S, Stevens P, Grumaz C et al. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 8(1), 73 (2016).Crossref, Medline, Google Scholar11. Gyarmati P, Kjellander C, Aust C, Kalin M, Öhrmalm L, Giske CG. Bacterial landscape of bloodstream infections in neutropenic patients via high throughput sequencing. PLoS ONE 10(8), e0135756 (2015).Crossref, Medline, Google Scholar12. Ecker DJ, Sampath R, Li H et al. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev. Mol. Diagn. 10(4), 399–415 (2010).Crossref, Medline, CAS, Google Scholar13. Song Y, Giske CG, Gille-Johnson P, Emanuelsson O, Lundeberg J, Gyarmati P. Nuclease-assisted suppression of human DNA background in sepsis. PLoS ONE 9(7), e103610 (2014).Crossref, Medline, Google Scholar14. Stewart EJ. Growing unculturable bacteria. J. Bacteriol. 194(16), 4151–4160 (2012).Crossref, Medline, CAS, Google Scholar15. Song Y, Gyarmati P. Optimized detection of bacteria in bloodstream infections. PLoS ONE 14(6), e0219086 (2019).Crossref, Medline, CAS, Google Scholar16. Horiba K, Torii Y, Okumura T et al. Next-generation sequencing to detect pathogens in pediatric febrile neutropenia: a single-center retrospective study of 112 cases. Open Forum Infect. Dis. 8(11), ofab223 (2021).Crossref, Medline, Google Scholar17. Hogan CA, Yang S, Garner OB et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin. Infect. Dis. 72(2), 239–245 (2021).Crossref, Medline, CAS, Google Scholar18. Dargère S, Cormier H, Verdon R. Contaminants in blood cultures: importance, implications, interpretation and prevention. Clin. Microbiol. Infect. 24(9), 964–969 (2018).Crossref, Medline, CAS, Google Scholar19. Kumar SS, Ghosh AR. Assessment of bacterial viability: a comprehensive review on recent advantages and challenges. Microbiology (Reading) 165(6), 593–610 (2019).Crossref, Medline, CAS, Google Scholar20. Korem T, Zeevi D, Suez J et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349(6252), 1101–1106 (2015).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Vol. 17, No. 5 STAY CONNECTED Metrics Downloaded 157 times History Received 12 December 2021 Accepted 16 December 2021 Published online 17 February 2022 Published in print March 2022 Information© 2022 Future Medicine LtdKeywordsblood culturebloodstream infectionhigh-throughput sequencingmetagenomicsmolecular detectionFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download