已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulation of deep eutectic solvents: Progress to promises

共晶体系 计算机科学 三元运算 分子动力学 二进制数 氢键 材料科学 纳米技术 分子 化学 计算化学 数学 算术 有机化学 合金 复合材料 程序设计语言
作者
Caroline Velez,Orlando Acevedo
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:12 (4) 被引量:50
标识
DOI:10.1002/wcms.1598
摘要

Abstract Deep eutectic solvents (DESs) are binary or ternary mixtures of compounds that possess significant melting point depressions relative to the pure isolated components. The discovery of DESs has been a major breakthrough with multiple fields benefitting from their low cost and tunable physiochemical properties. However, tailoring DESs for specific applications through their practically unlimited synthetic combinations can be as much a hindrance as a benefit given the expense and time‐required to perform large‐scale experimental measurements. This emphasizes the need for fast computational tools capable of making accurate predictions of DES physiochemical properties exclusively from molecular structure. Yet, these systems are not trivial to model or simulate at the atomic level given their exceedingly nonideal behaviors, asymmetry of components, and the complexity of their molecular electrostatic interactions. Despite the challenge, computational reports featuring quantum mechanical (QM) methods have provided significant understanding into the relationship between the melting point depression and the unique and complex hydrogen bond network present in DESs. Classical molecular dynamics (MD) methods have examined bulk‐phase solvent organization in conjunction with thermodynamic and transport properties. Machine learning (ML) algorithms have shown great potential as structure–property prediction tools. Overall, this review highlights computational accomplishments that have meaningfully advanced our understanding of DESs and strives to give the reader a sense of the overall strengths and drawbacks of the methodologies employed while hinting at promises of advances to come. This article is categorized under: Software > Simulation Methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助成美采纳,获得10
2秒前
WaitP应助Felix采纳,获得10
2秒前
5秒前
6秒前
研友_VZG7GZ应助binxman采纳,获得10
7秒前
牛奶开水发布了新的文献求助20
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得30
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
DL发布了新的文献求助10
11秒前
科研通AI5应助sy采纳,获得10
13秒前
酷波er应助Felix采纳,获得10
17秒前
uranus完成签到,获得积分10
19秒前
WaitP应助落伍的螃蟹采纳,获得10
19秒前
优雅苑睐完成签到,获得积分10
20秒前
21秒前
24秒前
小凯完成签到 ,获得积分10
25秒前
善良的西瓜完成签到 ,获得积分10
25秒前
希夷完成签到,获得积分10
28秒前
轻松黑裤完成签到,获得积分20
28秒前
dormraider完成签到,获得积分10
28秒前
轻松黑裤发布了新的文献求助10
31秒前
牛奶开水完成签到 ,获得积分10
31秒前
33秒前
iu1392发布了新的文献求助10
33秒前
34秒前
song完成签到 ,获得积分10
35秒前
风筝鱼完成签到 ,获得积分10
35秒前
QCB完成签到 ,获得积分10
36秒前
DODO完成签到,获得积分10
37秒前
Zenglongying完成签到 ,获得积分10
37秒前
JamesPei应助义气的跳跳糖采纳,获得10
38秒前
38秒前
39秒前
科研通AI2S应助zy123采纳,获得10
44秒前
46秒前
46秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798374
求助须知:如何正确求助?哪些是违规求助? 3343792
关于积分的说明 10317687
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296