The Perfect Imperfections in Electrocatalysts

材料科学 析氧 纳米技术 纳米材料 煅烧 电池(电) 氧化物 电化学 分解水 钙钛矿(结构) 催化作用 化学工程 电极 化学 冶金 生物化学 功率(物理) 物理 物理化学 光催化 量子力学 工程类
作者
Rahul Majee,Sahanaz Parvin,Quazi Arif Islam,Ashwani Kumar,Bharati Debnath,Surajit Mondal,Subhajit Bhattacharjee,Satarupa Das,Arun Kumar,Sayan Bhattacharyya
出处
期刊:Chemical Record [Wiley]
卷期号:22 (9) 被引量:18
标识
DOI:10.1002/tcr.202200070
摘要

Abstract Modern day electrochemical devices find applications in a wide range of industrial sectors, from consumer electronics, renewable energy management to pollution control by electric vehicles and reduction of greenhouse gas. There has been a surge of diverse electrochemical systems which are to be scaled up from the lab‐scale to industry sectors. To achieve the targets, the electrocatalysts are continuously upgraded to meet the required device efficiency at a low cost, increased lifetime and performance. An atomic scale understanding is however important for meeting the objectives. Transitioning from the bulk to the nanoscale regime of the electrocatalysts, the existence of defects and interfaces is almost inevitable, significantly impacting (augmenting) the material properties and the catalytic performance. The intrinsic defects alter the electronic structure of the nanostructured catalysts, thereby boosting the performance of metal‐ion batteries, metal‐air batteries, supercapacitors, fuel cells, water electrolyzers etc. This account presents our findings on the methods to introduce measured imperfections in the nanomaterials and the impact of these atomic‐scale irregularities on the activity for three major reactions, oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Grain boundary (GB) modulation of the (ABO 3 ) n type perovskite oxide by noble metal doping is a propitious route to enhance the OER/ORR bifunctionality for zinc‐air battery (ZAB). The perovskite oxides can be tuned by calcination at different temperatures to alter the oxygen vacancy, GB fraction and overall reactivity. The oxygen defects, unsaturated coordination environment and GBs can turn a relatively less active nanostructure into an efficient redox active catalyst by imbibing plenty of electrochemically active sites. Obviously, the crystalline GB interface is a prerequisite for effective electron flow, which is also applicable for the crystalline surface oxide shell on metal alloy core of the nanoparticles (NPs). The oxygen vacancy of two‐dimensional (2D) perovskite oxide can be made reversible by the A‐site termination of the nanosheets, facilitating the reversible entry and exit of a secondary phase during the redox processes. In several instances, the secondary phases have been observed to introduce the right proportion of structural defects and orbital occupancies for adsorption and desorption of reaction intermediates. Also, heterogeneous interfaces can be created by wrapping the perovskite oxide with negatively charged surface by layered double hydroxide (LDH) can promote the OER process. In another approach, ion intercalation at the 2D heterointerfaces steers the interlayer spacing that can influence the mass diffusion. Similar to anion vacancy, controlled formation of the cation vacancies can be achieved by exsolving the B‐site cations of perovskite oxides to surface anchored catalytically active metal/alloy NPs. In case of the alloy electrocatalysts, incomplete solid solution by two or more mutually immiscible metals results in heterogeneous alloys having differently exposed facets with complementary functionalities. From the future perspective, new categories of defect structures including the 2D empty spaces or voids leading to undercoordinated sites, the multiple interfaces in heterogeneous alloys, antisite defects between anions and cations, and the defect induced inverse charge transfer should bring new dimensionalities to this riveting area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助小小采纳,获得10
刚刚
科研通AI5应助小小采纳,获得10
刚刚
科研通AI5应助小小采纳,获得10
刚刚
1秒前
2秒前
孙伟健完成签到,获得积分10
3秒前
幸运幸福完成签到,获得积分10
3秒前
jbq完成签到,获得积分10
3秒前
鸣蜩十三完成签到,获得积分10
4秒前
Edward发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
浮游应助Bdcy采纳,获得10
7秒前
张小杰发布了新的文献求助10
8秒前
乐观小之应助zyj采纳,获得10
9秒前
mispring发布了新的文献求助10
10秒前
等风来发布了新的文献求助10
10秒前
脑洞疼应助沅沅采纳,获得10
11秒前
粗心的新儿完成签到,获得积分10
11秒前
不器君发布了新的文献求助10
11秒前
12秒前
111发布了新的文献求助10
12秒前
13秒前
浮游应助贪玩翎采纳,获得10
13秒前
13秒前
TH发布了新的文献求助10
13秒前
14秒前
张宸完成签到,获得积分10
15秒前
15秒前
15秒前
斯文败类应助一团小煤球采纳,获得10
15秒前
彭于晏应助Bruce采纳,获得10
16秒前
FashionBoy应助二三采纳,获得10
17秒前
加贺发布了新的文献求助20
17秒前
17秒前
量子星尘发布了新的文献求助30
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262