Development of a Novel Scar Screening System with Machine Learning

医学 医学诊断 疤痕 上传 人工智能 增生性瘢痕 目的皮肤病学 机器学习 医学物理学 医疗保健 算法 外科 远程医疗 放射科 计算机科学 经济 操作系统 经济增长
作者
Hiroyuki Ito,Yutaka Nakamura,Keisuke Takanari,Mayumi Oishi,Keitaro Matsuo,Miki Kanbe,Takafumi Uchibori,Katsumi Ebisawa,Yuzuru Kamei
出处
期刊:Plastic and Reconstructive Surgery [Lippincott Williams & Wilkins]
卷期号:150 (2): 465e-472e 被引量:16
标识
DOI:10.1097/prs.0000000000009312
摘要

Hypertrophic scars and keloids tend to cause serious functional and cosmetic impediments to patients. As these scars are not life threatening, many patients do not seek proper treatment. Thus, educating physicians and patients regarding these scars is important. The authors aimed to develop an algorithm for a scar screening system and compare the accuracy of the system with that of physicians. This algorithm was designed to involve health care providers and patients.Digital images were obtained from Google Images (Google LLC, Mountain View, Calif.), open access repositories, and patients in the authors' hospital. After preprocessing, 3768 images were uploaded to the Google Cloud AutoML Vision platform and labeled with one of the four diagnoses: immature scars, mature scars, hypertrophic scars, and keloid. A consensus label for each image was compared with the label provided by physicians.For all diagnoses, the average precision (positive predictive value) of the algorithm was 80.7 percent, the average recall (sensitivity) was 71 percent, and the area under the curve was 0.846. The algorithm afforded 77 correct diagnoses with an accuracy of 77 percent. Conversely, the average physician accuracy was 68.7 percent. The Cohen kappa coefficient of the algorithm was 0.69, while that of the physicians was 0.59.The authors developed a computer vision algorithm that can diagnose four scar types using automated machine learning. Future iterations of this algorithm, with more comprehensive accuracy, can be embedded in telehealth and digital imaging platforms used by patients and primary doctors. The scar screening system with machine learning may be a valuable support tool for physicians and patients.Diagnostic, II.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鹿爱科研完成签到 ,获得积分10
1秒前
1秒前
刘汐完成签到,获得积分10
1秒前
Jasper应助blUe采纳,获得10
1秒前
1秒前
溪秋白发布了新的文献求助10
1秒前
莱雅lyre完成签到,获得积分10
2秒前
领导范儿应助tgd采纳,获得10
2秒前
淇淇完成签到,获得积分10
2秒前
2秒前
航某人完成签到,获得积分10
3秒前
阳6完成签到 ,获得积分10
4秒前
勤奋旭尧完成签到,获得积分10
4秒前
清秀豪英发布了新的文献求助10
4秒前
佛系少女发布了新的文献求助10
5秒前
吕小布完成签到,获得积分10
5秒前
诚心涵柳完成签到,获得积分10
5秒前
Liar完成签到,获得积分0
6秒前
sasamuxi完成签到 ,获得积分10
6秒前
科研猫完成签到,获得积分10
7秒前
奔跑的青霉素完成签到 ,获得积分10
7秒前
crescendo发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
杨三多完成签到,获得积分10
9秒前
9秒前
光亮的幻柏完成签到,获得积分10
10秒前
Xccc完成签到,获得积分10
10秒前
Fiona完成签到,获得积分10
10秒前
坛子完成签到,获得积分10
10秒前
醉翁完成签到,获得积分10
10秒前
lihua完成签到,获得积分10
11秒前
11秒前
一澡干菜完成签到,获得积分10
11秒前
清秀豪英完成签到,获得积分10
12秒前
yaozhaoyi完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助20
12秒前
缥缈的背包完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4881768
求助须知:如何正确求助?哪些是违规求助? 4167672
关于积分的说明 12930198
捐赠科研通 3927391
什么是DOI,文献DOI怎么找? 2155430
邀请新用户注册赠送积分活动 1173669
关于科研通互助平台的介绍 1078479