中和
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
抗体
效力
2019年冠状病毒病(COVID-19)
中和抗体
病毒学
计算生物学
抗原
稳健性(进化)
2019-20冠状病毒爆发
抗体反应
生物
免疫学
计算机科学
医学
基因
遗传学
传染病(医学专业)
体外
疾病
病理
爆发
作者
Fangqiang Zhu,Saravanan Rajan,Conor F. Hayes,Ka Yin Kwong,André Gonçalves,Adam Zemła,Edmond Y. Lau,Yi Zhang,Yíngyún Caì,John W. Goforth,Mikel Landajuela,Pavlo Gilchuk,Michael Kierny,Andrew Dippel,Bismark Amofah,Gilad Kaplan,Vanessa Cadevilla Peano,Christopher Morehouse,Benjamin Sparklin,Vancheswaran Gopalakrishnan
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-03-28
卷期号:11 (13)
被引量:1
标识
DOI:10.1126/sciadv.adu0718
摘要
Most previously authorized clinical antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have lost neutralizing activity to recent variants due to rapid viral evolution. To mitigate such escape, we preemptively enhance AZD3152, an antibody authorized for prophylaxis in immunocompromised individuals. Using deep mutational scanning (DMS) on the SARS-CoV-2 antigen, we identify AZD3152 vulnerabilities at antigen positions F456 and D420. Through two iterations of computational antibody design that integrates structure-based modeling, machine-learning, and experimental validation, we co-optimize AZD3152 against 24 contemporary and previous SARS-CoV-2 variants, as well as 20 potential future escape variants. Our top candidate, 3152-1142, restores full potency (100-fold improvement) against the more recently emerged XBB.1.5+F456L variant that escaped AZD3152, maintains potency against previous variants of concern, and shows no additional vulnerability as assessed by DMS. This preemptive mitigation demonstrates a generalizable approach for optimizing existing antibodies against potential future viral escape.
科研通智能强力驱动
Strongly Powered by AbleSci AI