Deep learning-based collision detection framework for robot tasks in clutter

杂乱 碰撞检测 人工智能 计算机科学 碰撞 机器人 深度学习 计算机视觉 雷达 电信 计算机安全
作者
Giacomo Golluccio,Daniele Di Vito,Gianluca Antonelli,Alessandro Marino
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-20
标识
DOI:10.1017/s0263574725000517
摘要

Abstract In this work, the problem of reliably checking collisions between robot manipulators and the surrounding environment in short time for tasks, such as replanning and object grasping in clutter, is addressed. Geometric approaches are usually applied in this context; however, they can result not suitable in highly time-constrained applications. The purpose of this paper is to present a learning-based method able to outperform geometric approaches in clutter. The proposed approach uses a neural network (NN) to detect collisions online by performing a classification task on the input represented by the depth image or point cloud containing the robot gripper projected into the application scene. Specifically, several state-of-the-art NN architectures are considered, along with some customization to tackle the problem at hand. These approaches are compared to identify the model that achieves the highest accuracy while containing the computational burden. The analysis shows the feasibility of the robot collision checker based on a deep learning approach. In fact, such approach presents a low collision detection time, of the order of milliseconds on the selected hardware, with acceptable accuracy. Furthermore, the computational burden is compared with state-of-the-art geometric techniques. The entire work is based on an industrial case study involving a KUKA Agilus industrial robot manipulator at the Technology $\&$ Innovation Center of KUKA Deutschland GmbH, Germany. Further validation is performed with the Amazon Robotic Manipulation Benchmark (ARMBench) dataset as well, in order to corroborate the reported findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hjyylab应助zhang005on采纳,获得10
1秒前
神勇金毛完成签到,获得积分10
1秒前
桐桐应助snow采纳,获得10
2秒前
我爱磕盐完成签到,获得积分10
2秒前
maoamo2024发布了新的文献求助10
2秒前
Jasper应助整齐的dy采纳,获得10
4秒前
24豆发布了新的文献求助10
4秒前
倒霉兔子完成签到,获得积分0
4秒前
大吉发布了新的文献求助10
5秒前
5秒前
华仔应助杨海菡采纳,获得10
6秒前
管锦完成签到,获得积分20
6秒前
1122发布了新的文献求助30
7秒前
季定玮完成签到,获得积分20
7秒前
hjyylab应助年轻的藏今采纳,获得10
8秒前
一一完成签到,获得积分10
8秒前
Owen应助9527采纳,获得10
8秒前
幻想家姬别情完成签到,获得积分10
9秒前
10秒前
义气发卡完成签到 ,获得积分10
11秒前
yang发布了新的文献求助10
11秒前
柔弱的盼柳完成签到,获得积分10
11秒前
俏皮的安萱完成签到,获得积分10
11秒前
11秒前
11秒前
杨海菡完成签到,获得积分20
14秒前
RICK完成签到,获得积分10
14秒前
kitty完成签到,获得积分10
14秒前
Sunly发布了新的文献求助10
15秒前
123完成签到,获得积分10
15秒前
搞怪莫茗发布了新的文献求助10
15秒前
15秒前
帅气的丑完成签到,获得积分10
15秒前
xuanxuan完成签到 ,获得积分10
16秒前
hong发布了新的文献求助10
16秒前
科研小白完成签到,获得积分10
16秒前
明亮的翠风完成签到,获得积分10
18秒前
以戈完成签到,获得积分10
18秒前
cindy完成签到,获得积分10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966