VMD-CNN-BiGRU Model for Vehicle Fuel Consumption Prediction Considering Spatial-Functional Road Characteristics

燃料效率 计算机科学 汽车工程 人工智能 工程类
作者
Yang Gao,Lixin Yan,Guangyang Deng,Siyuan Chen
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-7211
摘要

<div class="section abstract"><div class="htmlview paragraph">To accurately predict the fuel consumption of vehicles, this study proposes a vehicle fuel consumption prediction model based on the VMD-CNN-BiGRU algorithm by considering six road spatial features such as road grades, one-way road attributes and intersection attributes. First, the VMD algorithm is employed to reduce the nonlinearity and nonsmoothness of the raw data by determining the optimal number of VMD decomposition modes. Then, the CNN-BiGRU algorithm is used to predict each modal component after decomposition, and the obtained prediction results are compared and analyzed with the prediction results of existing CNN-BiGRU, EMD-CNN-BiGRU and EEMD-CNN-BiGRU models. The results show that the VMD-CNN-BiGRU model significantly outperforms other models in terms of prediction performance and can accurately capture the trend of vehicle fuel consumption, thus effectively verifying the superiority and feasibility of the model. In addition, this study provides an in-depth analysis of the correlation between vehicle fuel consumption and time as well as spatial-functional characteristics of roads. The results show that the macroscopic distribution of vehicle fuel consumption is consistent with the distribution during peak traffic hours, while there are significant differences in vehicle fuel consumption under different road conditions.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY应助xiaoying在奋斗采纳,获得10
1秒前
经竺发布了新的文献求助10
1秒前
cecilycen完成签到,获得积分10
3秒前
河狸完成签到 ,获得积分10
3秒前
zou发布了新的文献求助200
4秒前
小蘑菇应助橙酒采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
852应助气味采纳,获得10
7秒前
小马甲应助清森采纳,获得10
8秒前
mio发布了新的文献求助10
9秒前
汪晓羽发布了新的文献求助10
10秒前
11秒前
无花果应助练习者采纳,获得10
12秒前
球球发布了新的文献求助10
12秒前
t12s2365_发布了新的文献求助10
12秒前
羊六七完成签到,获得积分10
13秒前
明亮飞扬完成签到,获得积分10
13秒前
合适冰棍完成签到,获得积分10
14秒前
RyannYang发布了新的文献求助10
15秒前
mio完成签到,获得积分10
18秒前
19秒前
天天快乐应助球球采纳,获得10
19秒前
慢慢人发布了新的文献求助10
21秒前
猪猪猪完成签到,获得积分10
21秒前
ren发布了新的文献求助20
22秒前
萝卜干完成签到,获得积分10
22秒前
23秒前
练习者发布了新的文献求助10
23秒前
24秒前
27秒前
梨梨发布了新的文献求助10
27秒前
28秒前
气味发布了新的文献求助10
28秒前
29秒前
100发布了新的文献求助10
31秒前
张雯雯发布了新的文献求助10
31秒前
汪晓羽完成签到,获得积分20
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787120
求助须知:如何正确求助?哪些是违规求助? 3332779
关于积分的说明 10257438
捐赠科研通 3048189
什么是DOI,文献DOI怎么找? 1673009
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760287