亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self‐supervised arbitrary‐scale super‐angular resolution diffusion MRI reconstruction

增采样 特征(语言学) 人工智能 磁共振弥散成像 计算机科学 计算机视觉 扩散 迭代重建 图像分辨率 体素 加权 角度分辨率(图形绘制) 算法 模式识别(心理学) 数学 磁共振成像 图像(数学) 物理 医学 组合数学 放射科 热力学 哲学 语言学 声学
作者
Siqi Wang,Lihui Wang,Ying Cao,Zeyu Deng,Chen Ye,Rongpin Wang,Yuemin Zhu,Hongjiang Wei
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17691
摘要

Abstract Background Diffusion magnetic resonance imaging (dMRI) is currently the unique noninvasive imaging technique to investigate the microstructure of in vivo tissues. To fully explore the complex tissue microstructure at sub‐voxel scale, diffusion weighted (DW) images along many diffusion gradient directions are usually acquired, this is undoubtedly time consuming and inhibits their clinical applications. How to estimate the tissue microstructure only from DW images acquired with few diffusion directions remains a challenge. Purpose To address this challenge, we propose a self‐supervised arbitrary scale super‐angular resolution diffusion MRI reconstruction network (SARDI‐nn), which can generate DW images along any directions from few acquisitions, allowing to overcome the limits of diffusion direction number on exploring the tissue microstructure. Methods SARDI‐nn is mainly composed of a diffusion direction‐specific DW image feature extraction (DWFE) module and a physics‐driven implicit expression and reconstruction (IRR) module. During training, dual downsampling operations are implemented. The first downsampling is used to produce the low‐angular resolution (LAR) DW images; the second downsampling is for constructing input and learning target of SARDI‐nn. The input LAR DW images pass through a DWFE module (composed of several residual blocks) to extract the feature representations of DW images along input directions, and then these features and the difference between the any querying diffusion direction and the input directions are input into a IRR module to derive the implicit representation and DW image along this query direction. Finally, based on the principle of dMRI, an adaptive weighting method is used to refine the DW image quality. During testing, given any diffusion directions, we can simply infer the corresponding DW images along these directions, accordingly, SARDI‐nn can realize arbitrary scale angular super resolution. To test the effectiveness of the proposed method, we compare it with several existing methods in terms of peak signal to noise ratio (PSNR), structural similarity index measure (SSIM), and root mean square error (RMSE) of DW image and microstructure metrics derived from diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) models at different upsampling scales on Human Connectome Project (HCP) and several in‐house datasets. Results The comparison results demonstrate that our method achieves almost the best performance at all scales, with SSIM of reconstructed DW images improved by 10.04% at the upscale of 3 and 5.9% at the upscale of 15. Regarding the microstructures derived from DKI and NODDI models, when the upscale is not larger than 6, our method outperforms the best supervised learning method. In addition, the test results on external datasets show the well generality of our method. Conclusions SARDI‐nn is currently the only method that can reconstruct high‐angular resolution DW images with any upscales, which allows the variation of both input diffusion direction number and upscales, therefore, it can be easily extended to any unseen test datasets, not requiring to retrain the model. SARDI‐nn provides a promising means for exploring the tissue microstructures from DW images along few diffusion gradient directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
momo完成签到,获得积分10
38秒前
liyali完成签到,获得积分10
1分钟前
Dou完成签到,获得积分10
1分钟前
bkagyin应助Cherish采纳,获得10
2分钟前
阿玖完成签到 ,获得积分10
2分钟前
yema完成签到 ,获得积分10
3分钟前
hyx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
han发布了新的文献求助10
3分钟前
3分钟前
3分钟前
乐观生活发布了新的文献求助10
3分钟前
tlh完成签到 ,获得积分10
4分钟前
星辰大海应助乐观生活采纳,获得10
4分钟前
领导范儿应助Ara采纳,获得30
4分钟前
han完成签到,获得积分10
4分钟前
6分钟前
Ara发布了新的文献求助30
6分钟前
忧郁如柏完成签到,获得积分10
6分钟前
6分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
Ara完成签到,获得积分10
7分钟前
无奈的盼望完成签到 ,获得积分10
7分钟前
思源应助肝肝好采纳,获得10
7分钟前
Magali发布了新的文献求助10
7分钟前
水煮鱼发布了新的文献求助10
7分钟前
fxf发布了新的文献求助30
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
轻松小张应助hugeyoung采纳,获得30
7分钟前
fxf完成签到,获得积分10
8分钟前
英姑应助科研通管家采纳,获得10
8分钟前
9分钟前
大模型应助橙子采纳,获得10
9分钟前
9分钟前
研友_LBRPOL发布了新的文献求助200
10分钟前
10分钟前
烟花应助科研通管家采纳,获得20
10分钟前
忘忧Aquarius完成签到,获得积分10
10分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808077
求助须知:如何正确求助?哪些是违规求助? 3352717
关于积分的说明 10360167
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810359
科研通“疑难数据库(出版商)”最低求助积分说明 766045