Ultrahigh-performance solid-solid phase change material for efficient, high-temperature thermal energy storage

材料科学 热能储存 热稳定性 储能 复合材料 可再生能源 热能 潜热 核工程 工艺工程 化学工程 热力学 电气工程 功率(物理) 物理 工程类
作者
Shengwei Li,Lunhua He,Huaile Lu,Jiazheng Hao,Dekun Wang,Feiran Shen,Chao Song,Guijun Liu,Pengfei Du,Yandong Wang,Daoyong Cong
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:249: 118852-118852 被引量:28
标识
DOI:10.1016/j.actamat.2023.118852
摘要

Thermal energy storage using phase change materials (PCMs) offers enormous potential for regulation of unmatched energy supply and demand of renewable energy resources, recycling of waste thermal energy, and thermal management in high-power electronic devices. However, solid-liquid PCMs, which are the most commonly used PCMs, suffer from fatal drawbacks of liquid leakage, shape instability and severe corrosiveness at elevated temperatures, posing a great threat to the stability, safety and service life of thermal energy storage systems. Here, we developed a class of novel, ultrahigh-performance solid-solid PCMs. A giant figure of merit of 9056 × 106 J2/(K⋅s⋅m4), much higher than most existing PCMs (for instance, 15 times higher than commercial PCMs), was achieved by employing the large latent heat, high thermal conductivity and high density of these metallic Ni-Mn-Ti PCMs. Furthermore, these materials have tunable high phase-transition temperatures (290–500 °C), suitable for applications at different elevated temperatures, and exhibit superior thermal cycling stability. Being solid-solid PCMs, they possess inimitable advantages of no leakage risk, no corrosiveness and shape stability. Therefore, these Ni-Mn-Ti solid-solid PCMs are a robust candidate for efficient, compact and endurable high-temperature thermal energy storage applications. Our in-situ neutron diffraction experiment reveals a large unit cell volume change (2.49%) across phase transition and good geometric compatibility between the transforming phases, accounting for the large latent heat and superior thermal cyclability, respectively. This work opens a new avenue for designing advanced high-performance solid-state thermal energy storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李lili完成签到,获得积分10
1秒前
华仔应助江南逢李龟年采纳,获得10
1秒前
hahaha完成签到,获得积分10
1秒前
wwwu发布了新的文献求助10
1秒前
2秒前
ding应助小纯洁采纳,获得10
2秒前
www发布了新的文献求助10
2秒前
2秒前
3秒前
ww发布了新的文献求助10
3秒前
Astralis完成签到,获得积分10
3秒前
重重完成签到,获得积分10
3秒前
4秒前
Ttttt发布了新的文献求助10
4秒前
5秒前
WL发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
AAA发布了新的文献求助10
8秒前
8秒前
小二郎应助欧科狗采纳,获得10
8秒前
ED应助绵绵秋风细雨采纳,获得30
8秒前
9秒前
153266916完成签到 ,获得积分10
9秒前
xianyi关注了科研通微信公众号
9秒前
重重发布了新的文献求助10
9秒前
犹豫的忆梅完成签到,获得积分10
9秒前
dongbei完成签到,获得积分20
9秒前
希望天下0贩的0应助YC采纳,获得10
9秒前
ylt发布了新的文献求助10
9秒前
10秒前
qqq发布了新的文献求助10
10秒前
马馨雅发布了新的文献求助10
10秒前
10秒前
飘逸的翼发布了新的文献求助10
11秒前
11秒前
sxx完成签到,获得积分10
11秒前
大个应助李欢采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232807
求助须知:如何正确求助?哪些是违规求助? 3766187
关于积分的说明 11833112
捐赠科研通 3424730
什么是DOI,文献DOI怎么找? 1879435
邀请新用户注册赠送积分活动 932290
科研通“疑难数据库(出版商)”最低求助积分说明 839512