Ultrahigh-performance solid-solid phase change material for efficient, high-temperature thermal energy storage

材料科学 热能储存 热稳定性 储能 复合材料 可再生能源 热能 潜热 核工程 工艺工程 化学工程 热力学 电气工程 功率(物理) 物理 工程类
作者
Shengwei Li,Lunhua He,Huaile Lu,Jiazheng Hao,Dekun Wang,Fang Shen,Chao Song,Guijun Liu,Pengfei Du,Yandong Wang,Daoyong Cong
出处
期刊:Acta Materialia [Elsevier]
卷期号:249: 118852-118852 被引量:7
标识
DOI:10.1016/j.actamat.2023.118852
摘要

Thermal energy storage using phase change materials (PCMs) offers enormous potential for regulation of unmatched energy supply and demand of renewable energy resources, recycling of waste thermal energy, and thermal management in high-power electronic devices. However, solid-liquid PCMs, which are the most commonly used PCMs, suffer from fatal drawbacks of liquid leakage, shape instability and severe corrosiveness at elevated temperatures, posing a great threat to the stability, safety and service life of thermal energy storage systems. Here, we developed a class of novel, ultrahigh-performance solid-solid PCMs. A giant figure of merit of 9056 × 106 J2/(K⋅s⋅m4), much higher than most existing PCMs (for instance, 15 times higher than commercial PCMs), was achieved by employing the large latent heat, high thermal conductivity and high density of these metallic Ni-Mn-Ti PCMs. Furthermore, these materials have tunable high phase-transition temperatures (290–500 °C), suitable for applications at different elevated temperatures, and exhibit superior thermal cycling stability. Being solid-solid PCMs, they possess inimitable advantages of no leakage risk, no corrosiveness and shape stability. Therefore, these Ni-Mn-Ti solid-solid PCMs are a robust candidate for efficient, compact and endurable high-temperature thermal energy storage applications. Our in-situ neutron diffraction experiment reveals a large unit cell volume change (2.49%) across phase transition and good geometric compatibility between the transforming phases, accounting for the large latent heat and superior thermal cyclability, respectively. This work opens a new avenue for designing advanced high-performance solid-state thermal energy storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苍禾发布了新的文献求助10
1秒前
1秒前
5秒前
搜集达人应助别说话采纳,获得10
5秒前
王海波完成签到 ,获得积分10
10秒前
学习的小崽发布了新的文献求助100
12秒前
liv应助fffff采纳,获得10
15秒前
招财小茗完成签到,获得积分10
15秒前
优雅爆米花完成签到,获得积分10
19秒前
超神完成签到,获得积分10
23秒前
23秒前
24秒前
别说话完成签到,获得积分10
25秒前
cxzhao完成签到,获得积分10
27秒前
沁沁完成签到,获得积分10
27秒前
贝贝发布了新的文献求助20
29秒前
30秒前
31秒前
35秒前
哇了哇发布了新的文献求助10
36秒前
诚心断天完成签到,获得积分10
39秒前
zero发布了新的文献求助10
39秒前
尤珩发布了新的文献求助10
40秒前
刘福兮完成签到,获得积分10
44秒前
包包糖在摸鱼完成签到 ,获得积分10
46秒前
47秒前
47秒前
系吴世勋完成签到,获得积分10
48秒前
桐桐应助娇气的友易采纳,获得10
48秒前
赘婿应助哇了哇采纳,获得10
49秒前
49秒前
Mike001发布了新的文献求助10
52秒前
系吴世勋发布了新的文献求助10
53秒前
Mike001发布了新的文献求助10
54秒前
フー・ヘイ・ホイ完成签到,获得积分10
54秒前
慕青应助自信的劳尔采纳,获得10
56秒前
MM11111发布了新的文献求助20
57秒前
59秒前
小蘑菇应助HongJiang采纳,获得10
1分钟前
29完成签到,获得积分10
1分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394175
求助须知:如何正确求助?哪些是违规求助? 2097973
关于积分的说明 5286560
捐赠科研通 1825442
什么是DOI,文献DOI怎么找? 910174
版权声明 559960
科研通“疑难数据库(出版商)”最低求助积分说明 486453