A* guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems

寻路 计算机科学 过程(计算) 路径(计算) 强化学习 人工智能 自动引导车 算法 理论计算机科学 最短路径问题 操作系统 图形 程序设计语言
作者
Lei Luo,Ning Zhao,Yi Zhu,Yangjun Sun
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:178: 109112-109112 被引量:42
标识
DOI:10.1016/j.cie.2023.109112
摘要

This paper proposes an A* guiding deep Q-network (AG-DQN) algorithm for solving the pathfinding problem of an automated guided vehicle (AGV) in a robotic mobile fulfillment system (RMFS), that is, a parts-to-picker storage system with numerous AGVs replacing manual labor to improve the efficiency of picking work in warehouses. The pathfinding problem in an RMFS has characteristics such as changing scenes, narrow spaces, and significant decision-making time requirements. The A* algorithm and its variants have been widely used to address this problem. In this paper, we propose a reinforcement learning algorithm for a single AGV that uses the A* algorithm to guide the DQN algorithm. This makes the training process faster and requires less decision-making time than the A* algorithm. The trained neural network in the AG-DQN algorithm requires only the layout information of the current system to guide the AGV to complete a series of randomly assigned tasks. We used the AG-DQN algorithm to control the AGV pathfinding and complete tasks at different scales and layouts of the RMFS models, including traditional rectangular layouts and certain special layouts (e.g., fishbone layouts). The results show that the AG-DQN can train the AGV to find the correct shortest path to complete all tasks in less training time than the standard DQN algorithm. In addition, the decision-making time of the AG-DQN is less than that of the A* algorithm. The AG-DQN algorithm saved 49.92% and 71.51% of the decision-making time for the small- and large-scale RMFS models, respectively. Thus, the AG-DQN algorithm offers valuable insights into AGV control in an RMFS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
轻狂书生完成签到,获得积分10
刚刚
Aimee完成签到 ,获得积分10
1秒前
小蘑菇应助董菲音采纳,获得10
1秒前
粒粒完成签到,获得积分20
2秒前
树上香蕉果完成签到,获得积分10
3秒前
奋斗蚂蚁完成签到 ,获得积分10
3秒前
清秀凡霜完成签到,获得积分10
3秒前
ming发布了新的文献求助20
4秒前
俞安珊完成签到,获得积分10
4秒前
闻巷雨完成签到 ,获得积分10
6秒前
阿龙完成签到,获得积分10
6秒前
丘比特应助猫小鱼采纳,获得10
6秒前
蒲泓州完成签到,获得积分10
6秒前
小蘑菇应助傅家庆采纳,获得10
7秒前
sdfwsdfsd完成签到,获得积分10
9秒前
dcx完成签到 ,获得积分10
10秒前
沉静野狼完成签到,获得积分10
11秒前
11秒前
无敌小天天完成签到 ,获得积分10
12秒前
董菲音完成签到,获得积分10
12秒前
AslenK完成签到,获得积分0
13秒前
13秒前
zhjwu完成签到,获得积分10
14秒前
帅气的宽完成签到 ,获得积分10
14秒前
董菲音发布了新的文献求助10
16秒前
马铃薯完成签到,获得积分10
16秒前
bill完成签到,获得积分10
16秒前
烂漫的煎饼完成签到 ,获得积分10
17秒前
Archie完成签到,获得积分10
18秒前
阔达采白完成签到,获得积分10
18秒前
854fycchjh完成签到,获得积分10
18秒前
傅家庆发布了新的文献求助10
19秒前
hero_ljw完成签到,获得积分10
19秒前
浅是宝贝完成签到,获得积分10
19秒前
Panchael完成签到,获得积分10
20秒前
杰行天下完成签到,获得积分10
20秒前
宇文风行完成签到,获得积分10
21秒前
明时完成签到,获得积分10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330