A* guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems

寻路 计算机科学 过程(计算) 路径(计算) 强化学习 人工智能 自动引导车 算法 理论计算机科学 最短路径问题 操作系统 图形 程序设计语言
作者
Lei Luo,Ning Zhao,Yi Zhu,Yangjun Sun
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:178: 109112-109112 被引量:30
标识
DOI:10.1016/j.cie.2023.109112
摘要

This paper proposes an A* guiding deep Q-network (AG-DQN) algorithm for solving the pathfinding problem of an automated guided vehicle (AGV) in a robotic mobile fulfillment system (RMFS), that is, a parts-to-picker storage system with numerous AGVs replacing manual labor to improve the efficiency of picking work in warehouses. The pathfinding problem in an RMFS has characteristics such as changing scenes, narrow spaces, and significant decision-making time requirements. The A* algorithm and its variants have been widely used to address this problem. In this paper, we propose a reinforcement learning algorithm for a single AGV that uses the A* algorithm to guide the DQN algorithm. This makes the training process faster and requires less decision-making time than the A* algorithm. The trained neural network in the AG-DQN algorithm requires only the layout information of the current system to guide the AGV to complete a series of randomly assigned tasks. We used the AG-DQN algorithm to control the AGV pathfinding and complete tasks at different scales and layouts of the RMFS models, including traditional rectangular layouts and certain special layouts (e.g., fishbone layouts). The results show that the AG-DQN can train the AGV to find the correct shortest path to complete all tasks in less training time than the standard DQN algorithm. In addition, the decision-making time of the AG-DQN is less than that of the A* algorithm. The AG-DQN algorithm saved 49.92% and 71.51% of the decision-making time for the small- and large-scale RMFS models, respectively. Thus, the AG-DQN algorithm offers valuable insights into AGV control in an RMFS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪爷爷完成签到,获得积分10
1秒前
1秒前
恐龙妹妹完成签到 ,获得积分10
4秒前
Django关注了科研通微信公众号
4秒前
AlexanderChen发布了新的文献求助10
5秒前
fangzhang发布了新的文献求助10
6秒前
莫之白完成签到,获得积分10
7秒前
曾经的半山完成签到 ,获得积分10
8秒前
33完成签到,获得积分10
9秒前
Akim应助猪猪女孩采纳,获得10
9秒前
10秒前
13秒前
华仔应助二东采纳,获得10
15秒前
zzj-zjut发布了新的文献求助10
16秒前
z11发布了新的文献求助10
16秒前
所所应助Jimmy采纳,获得10
17秒前
一帆风顺完成签到,获得积分10
18秒前
kid1412完成签到 ,获得积分10
18秒前
21秒前
21秒前
可爱的函函应助木染采纳,获得10
26秒前
科研通AI5应助zzj-zjut采纳,获得10
26秒前
27秒前
虎虎虎发布了新的文献求助10
27秒前
二东发布了新的文献求助10
27秒前
28秒前
29秒前
30秒前
科研通AI5应助Zpiao采纳,获得10
30秒前
Django发布了新的文献求助20
31秒前
31秒前
SciGPT应助prim采纳,获得30
31秒前
qiehahah发布了新的文献求助10
32秒前
Jimmy发布了新的文献求助10
33秒前
司徒不正完成签到 ,获得积分10
33秒前
张如意完成签到 ,获得积分10
36秒前
37秒前
Panda2022发布了新的文献求助10
37秒前
39秒前
kaihua发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776990
求助须知:如何正确求助?哪些是违规求助? 3322387
关于积分的说明 10210034
捐赠科研通 3037721
什么是DOI,文献DOI怎么找? 1666843
邀请新用户注册赠送积分活动 797700
科研通“疑难数据库(出版商)”最低求助积分说明 758012