A* guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems

寻路 计算机科学 过程(计算) 路径(计算) 强化学习 人工智能 自动引导车 算法 理论计算机科学 最短路径问题 图形 程序设计语言 操作系统
作者
Lei Luo,Ning Zhao,Yi Zhu,Yangjun Sun
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:178: 109112-109112 被引量:42
标识
DOI:10.1016/j.cie.2023.109112
摘要

This paper proposes an A* guiding deep Q-network (AG-DQN) algorithm for solving the pathfinding problem of an automated guided vehicle (AGV) in a robotic mobile fulfillment system (RMFS), that is, a parts-to-picker storage system with numerous AGVs replacing manual labor to improve the efficiency of picking work in warehouses. The pathfinding problem in an RMFS has characteristics such as changing scenes, narrow spaces, and significant decision-making time requirements. The A* algorithm and its variants have been widely used to address this problem. In this paper, we propose a reinforcement learning algorithm for a single AGV that uses the A* algorithm to guide the DQN algorithm. This makes the training process faster and requires less decision-making time than the A* algorithm. The trained neural network in the AG-DQN algorithm requires only the layout information of the current system to guide the AGV to complete a series of randomly assigned tasks. We used the AG-DQN algorithm to control the AGV pathfinding and complete tasks at different scales and layouts of the RMFS models, including traditional rectangular layouts and certain special layouts (e.g., fishbone layouts). The results show that the AG-DQN can train the AGV to find the correct shortest path to complete all tasks in less training time than the standard DQN algorithm. In addition, the decision-making time of the AG-DQN is less than that of the A* algorithm. The AG-DQN algorithm saved 49.92% and 71.51% of the decision-making time for the small- and large-scale RMFS models, respectively. Thus, the AG-DQN algorithm offers valuable insights into AGV control in an RMFS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁万仇完成签到,获得积分10
刚刚
刚刚
QQ发布了新的文献求助10
1秒前
1816013153发布了新的文献求助10
3秒前
AmosWong完成签到,获得积分20
3秒前
5秒前
单复天发布了新的文献求助10
5秒前
优美猕猴桃完成签到 ,获得积分10
5秒前
qq发布了新的文献求助10
6秒前
6秒前
6秒前
FanFan完成签到,获得积分10
7秒前
科研通AI6应助liuliu采纳,获得10
7秒前
7秒前
皮皮灰熊发布了新的文献求助10
11秒前
ccm应助夕荀采纳,获得10
11秒前
小白应助耍酷盼山采纳,获得10
11秒前
Chenglx完成签到,获得积分10
13秒前
李李05发布了新的文献求助10
13秒前
英吉利25发布了新的文献求助10
13秒前
诺奇完成签到,获得积分10
14秒前
小洋完成签到,获得积分10
14秒前
aass发布了新的文献求助10
15秒前
sleep举报冷酷的芷容求助涉嫌违规
16秒前
oo完成签到,获得积分10
18秒前
qq完成签到,获得积分20
19秒前
自觉平露完成签到,获得积分10
19秒前
bxhcs完成签到,获得积分10
21秒前
今后应助morility采纳,获得10
22秒前
22秒前
yang完成签到,获得积分10
22秒前
新新新发布了新的文献求助10
23秒前
渟柠完成签到,获得积分10
23秒前
图治完成签到,获得积分10
23秒前
映城发布了新的文献求助10
24秒前
无敌阿东完成签到,获得积分10
25秒前
大模型应助虚幻的黄蜂采纳,获得10
26秒前
26秒前
lvlijun发布了新的文献求助10
27秒前
柳随风完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370