Reaction Mechanisms and Improvement of α-MnO2 Cathode in Aqueous Zn-Ion Battery

阴极 水溶液 离子 材料科学 电池(电) 无机化学 电化学 化学工程 化学 电极 物理化学 有机化学 功率(物理) 物理 量子力学 工程类
作者
Taesoon Hwang,Matthew Bergschneider,Fantai Kong,Kyeongjae Cho
出处
期刊:Chemistry of Materials [American Chemical Society]
标识
DOI:10.1021/acs.chemmater.4c03176
摘要

Rechargeable aqueous Zn/α-MnO2 batteries have drawn enormous interest due to low cost, safety, and high energy density as a promising alternative to Li-ion batteries. In contrast, the reaction mechanism of charge storage still remains ambiguous owing to the complexity of side reactions in aqueous electrolytes. This report explored the fundamental reaction mechanism of Zn/α-MnO2 based on first-principles calculation. Zn4SO4(OH)6·xH2O (ZHS) is deposited from the irreversibly dissolved Mn as well as H+ intercalation at a similar voltage range from the first discharge. ZHS is then transformed to ZnMn3O7·3H2O (Zn inserted layered chalcophanite) with distorted α-MnO2 formation at a slightly low voltage range compared with the initial ZHS formation during the charge. Chalcophanite reversibly transformed to ZHS again at the second discharge. In addition, ZHS and chalcophanite are very inactive for ionic and electronic transports due to the high migration barrier of Zn2+ and H+ and large band gap. It is inferred that the reversible transformation from ZHS to chalcophanite and vice versa is the dominant reaction mechanism and can also degrade electrochemical properties by forming distorted α-MnO2 and limiting ion intercalation into the electrode. In addition, the reversible transformation occurs in a similar voltage range (ΔV = 230 mV) with Zn2+ and H+ intercalations. Considering that the surface of α-MnO2 mainly experiences severe side reactions, TiO2 coating, indicating thermodynamical stability in mildly acidic aqueous electrolyte and very low Zn migration barrier, would be a remedy for better performance by conducting Zn and protecting side reactions for aqueous Zn-ion battery cathode. This study provides fundamental insight for developing promising aqueous Zn-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助烂漫耳机采纳,获得10
1秒前
科研通AI5应助GH采纳,获得10
1秒前
1秒前
Orange应助要减肥世开采纳,获得30
2秒前
4秒前
HCL完成签到,获得积分10
4秒前
科研通AI5应助Ryuki采纳,获得10
4秒前
nicelily发布了新的文献求助10
5秒前
wuchun完成签到,获得积分10
5秒前
粱踏歌发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助寒冷的水桃采纳,获得30
9秒前
重楼又上一支蒿完成签到,获得积分10
9秒前
13秒前
keke完成签到,获得积分10
13秒前
烂漫耳机发布了新的文献求助10
14秒前
山火完成签到,获得积分20
15秒前
Sea_U应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得20
17秒前
雨夜星空应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
leez完成签到,获得积分10
19秒前
19秒前
稳重奇异果应助Su采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776633
求助须知:如何正确求助?哪些是违规求助? 3322152
关于积分的说明 10208826
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757921