Novel cable‐like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra‐wideband electromagnetic wave absorption

宽带 络腮胡子 材料科学 胡须 碳纤维 吸收(声学) 相(物质) 复合材料 冶金 物理 光学 复合数 量子力学
作者
Feiyue Hu,Pei Dao Ding,Fushuo Wu,Peigen Zhang,Weitao Zheng,Wenwen Sun,Rui Zhang,Longzhu Cai,Bingbing Fan,ZhengMing Sun
出处
期刊:Carbon energy [Wiley]
被引量:7
标识
DOI:10.1002/cey2.638
摘要

Abstract One‐dimensional (1D) metals are well known for their exceptional conductivity and their ease of formation of interconnected networks that facilitate electron migration, making them promising candidates for electromagnetic (EM) attenuation. However, the impedance mismatch from high conductivity and their singular mode of energy loss hinder effective EM wave dissipation. Construction of cable structures not only optimizes impedance matching but also introduces a multitude of heterojunctions, increasing attenuation modes and potentially enhancing EM wave absorption (EMA) performance. Herein, we showcase the scalable synthesis of tin (Sn) whiskers from a Ti 2 SnC MAX phase precursor, followed by creation of a 1D tin@carbon (Sn@C) cable structure through polymerization of PDA on their surface and annealing in argon. The EMA capabilities of Sn@C significantly surpass those of uncoated Sn whiskers, with an effective absorption bandwidth reaching 7.4 GHz. Remarkably, its maximum radar cross section reduction value of 27.85 dB m 2 indicates its exceptional stealth capabilities. The enhanced EMA performance is first attributed to optimized impedance matching, and furthermore, the Sn@C cable structures have rich SnO 2 /C and Sn/SnO 2 heterointerfaces and the associated defects, which increase interfacial and defect‐induced polarization losses, as visually demonstrated by off‐axis electron holography. The development of the Sn@C cable structure represents a notable advancement in broadening the scope of materials with potential applications in stealth technology, and this study also contributes to the understanding of how heterojunctions can improve EMA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助LWJ采纳,获得10
刚刚
刚刚
1秒前
滴滴哒发布了新的文献求助10
1秒前
0128lun完成签到,获得积分10
2秒前
动漫大师发布了新的文献求助10
2秒前
李帅完成签到,获得积分10
3秒前
黑猫完成签到,获得积分10
4秒前
换胃思考发布了新的文献求助10
5秒前
5秒前
风吹屁屁凉完成签到,获得积分10
5秒前
苏苏发布了新的文献求助10
6秒前
淡淡书白完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI5应助zby采纳,获得10
7秒前
paleo-地质发布了新的文献求助10
7秒前
wealan完成签到,获得积分0
7秒前
雪霓裳完成签到,获得积分10
7秒前
闪闪的夏之完成签到,获得积分10
7秒前
wwqc完成签到,获得积分0
7秒前
8秒前
8秒前
8秒前
别吃我的鱼完成签到,获得积分10
8秒前
9秒前
一棵好困芽完成签到 ,获得积分10
9秒前
小次之山完成签到,获得积分10
9秒前
虚拟的鞋垫完成签到,获得积分10
9秒前
JPH1990完成签到,获得积分10
10秒前
禾七发布了新的文献求助10
10秒前
11秒前
22222发布了新的文献求助10
11秒前
www发布了新的文献求助10
12秒前
12秒前
chase完成签到,获得积分10
12秒前
13秒前
13秒前
苏苏完成签到,获得积分10
13秒前
科研通AI5应助平凡日采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534