Quality classification model with machine learning for porosity prediction in laser welding aluminum alloys

多孔性 焊接 材料科学 过程(计算) 质量(理念) 激光束焊接 机器学习 计算机科学 人工智能 算法 工艺工程 机械工程 冶金 复合材料 工程类 操作系统 哲学 认识论
作者
Joys Silva Rivera,Marc-Olivier Gagné,Siyu Tu,Noureddine Barka,F. Nadeau,Abderrazak El Ouafi
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:35 (2): 022011-022011 被引量:5
标识
DOI:10.2351/7.0000769
摘要

The growing implementation of aluminum alloys in industry has focused interest on studying transformation processes such as laser welding. This process generates different kinds of signals that can be monitored and used to evaluate it and make a quality analysis of the final product. Internal defects that are difficult to detect, such as porosity, are one of the most critical irregularities in laser welding. This kind of defect may result in a critical failure of the manufactured goods, affecting the final user. In this research, a porosity prediction method using a high-speed camera monitoring system and machine learning (ML) algorithms is proposed and studied to find the most performant methodology to resolve the prediction problem. The methodology includes feature extraction by high-speed X-ray analysis, feature engineering and selection, imbalance treatment, and the evaluation of the ML algorithms by metrics such as accuracy, AUC (area under the curve), and F1. As a result, it was found that the best ML algorithm for porosity prediction in the proposed setup is Random Forest with a 0.83 AUC and 75% accuracy, 0.75 in the F1 score for no porosity, and 0.76 in the F1 score for porosity. The results of the proposed model and methodology indicate that they could be implemented in industrial applications for enhancing the final product quality for welded plates, reducing process waste and product quality analysis time, and increasing the operational performance of the process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助积极的千雁采纳,获得10
1秒前
2秒前
3秒前
serenity完成签到 ,获得积分10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
李健应助great7701采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
失眠醉易应助科研通管家采纳,获得20
7秒前
lucky应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
orange完成签到,获得积分10
10秒前
科研通AI5应助坦率土豆采纳,获得20
11秒前
12秒前
天天快乐应助俊藏星河采纳,获得10
13秒前
可爱的函函应助han采纳,获得10
13秒前
小二郎应助木昜采纳,获得10
15秒前
ytxu完成签到,获得积分20
16秒前
领导范儿应助佛系研究僧采纳,获得10
16秒前
杨可言完成签到,获得积分10
17秒前
在水一方应助李鑫鑫采纳,获得30
19秒前
谷遇发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802150
求助须知:如何正确求助?哪些是违规求助? 3347923
关于积分的说明 10335538
捐赠科研通 3063893
什么是DOI,文献DOI怎么找? 1682275
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763977