SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery

计算机科学 计算 目标检测 人工智能 像素 特征(语言学) 图像分辨率 模式识别(心理学) 对象(语法) 推论 深度学习 计算机视觉 失败 人工神经网络 算法 语言学 哲学 并行计算
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Zhenman Fang,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:118
标识
DOI:10.1109/tgrs.2023.3258666
摘要

Accurately and timely detecting multiscale small objects that contain tens of pixels from remote sensing images (RSI) remains challenging. Most of the existing solutions primarily design complex deep neural networks to learn strong feature representations for objects separated from the background, which often results in a heavy computation burden. In this article, we propose an accurate yet fast object detection method for RSI, named SuperYOLO, which fuses multimodal data and performs high-resolution (HR) object detection on multiscale objects by utilizing the assisted super resolution (SR) learning and considering both the detection accuracy and computation cost. First, we utilize a symmetric compact multimodal fusion (MF) to extract supplementary information from various data for improving small object detection in RSI. Furthermore, we design a simple and flexible SR branch to learn HR feature representations that can discriminate small objects from vast backgrounds with low-resolution (LR) input, thus further improving the detection accuracy. Moreover, to avoid introducing additional computation, the SR branch is discarded in the inference stage, and the computation of the network model is reduced due to the LR input. Experimental results show that, on the widely used VEDAI RS dataset, SuperYOLO achieves an accuracy of 75.09% (in terms of mAP50 ), which is more than 10% higher than the SOTA large models, such as YOLOv5l, YOLOv5x, and RS designed YOLOrs. Meanwhile, the parameter size and GFLOPs of SuperYOLO are about 18 times and 3.8 times less than YOLOv5x. Our proposed model shows a favorable accuracy and speed tradeoff compared to the state-of-the-art models. The code will be open-sourced at https://github.com/icey-zhang/SuperYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
kkk发布了新的文献求助10
刚刚
fade完成签到,获得积分10
刚刚
天天快乐应助小曾采纳,获得10
刚刚
1秒前
1秒前
1秒前
无花果应助自由南珍采纳,获得10
1秒前
李健应助牧连碧采纳,获得10
2秒前
2秒前
5秒前
5秒前
8R60d8应助iDong采纳,获得10
5秒前
5秒前
老10完成签到,获得积分10
5秒前
墨尘发布了新的文献求助30
6秒前
木木发布了新的文献求助10
6秒前
8R60d8应助欣喜翠丝采纳,获得10
6秒前
Herrily发布了新的文献求助20
6秒前
安详的白云完成签到 ,获得积分10
6秒前
单向度的人完成签到,获得积分10
8秒前
szn发布了新的文献求助10
8秒前
小二郎应助孝顺的雁芙采纳,获得10
8秒前
冰激凌发布了新的文献求助10
8秒前
Qy05发布了新的文献求助10
9秒前
tczw667完成签到,获得积分10
9秒前
9秒前
Nz96ForU发布了新的文献求助10
10秒前
潘潘完成签到,获得积分10
11秒前
牧连碧完成签到,获得积分20
12秒前
领导范儿应助月月采纳,获得10
12秒前
bzmuzxy发布了新的文献求助10
13秒前
李健的小迷弟应助蓝桉采纳,获得10
13秒前
13秒前
牧连碧发布了新的文献求助10
15秒前
乐乐应助Nz96ForU采纳,获得10
16秒前
YX完成签到,获得积分10
16秒前
Shen完成签到,获得积分10
17秒前
小陈鹿完成签到 ,获得积分10
18秒前
合适夜柳完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492865
求助须知:如何正确求助?哪些是违规求助? 4590758
关于积分的说明 14432450
捐赠科研通 4523400
什么是DOI,文献DOI怎么找? 2478286
邀请新用户注册赠送积分活动 1463327
关于科研通互助平台的介绍 1436054