SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery

计算机科学 计算 目标检测 人工智能 像素 特征(语言学) 图像分辨率 模式识别(心理学) 对象(语法) 推论 深度学习 计算机视觉 失败 人工神经网络 算法 语言学 哲学 并行计算
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Zhenman Fang,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:99
标识
DOI:10.1109/tgrs.2023.3258666
摘要

Accurately and timely detecting multiscale small objects that contain tens of pixels from remote sensing images (RSI) remains challenging. Most of the existing solutions primarily design complex deep neural networks to learn strong feature representations for objects separated from the background, which often results in a heavy computation burden. In this article, we propose an accurate yet fast object detection method for RSI, named SuperYOLO, which fuses multimodal data and performs high-resolution (HR) object detection on multiscale objects by utilizing the assisted super resolution (SR) learning and considering both the detection accuracy and computation cost. First, we utilize a symmetric compact multimodal fusion (MF) to extract supplementary information from various data for improving small object detection in RSI. Furthermore, we design a simple and flexible SR branch to learn HR feature representations that can discriminate small objects from vast backgrounds with low-resolution (LR) input, thus further improving the detection accuracy. Moreover, to avoid introducing additional computation, the SR branch is discarded in the inference stage, and the computation of the network model is reduced due to the LR input. Experimental results show that, on the widely used VEDAI RS dataset, SuperYOLO achieves an accuracy of 75.09% (in terms of mAP50 ), which is more than 10% higher than the SOTA large models, such as YOLOv5l, YOLOv5x, and RS designed YOLOrs. Meanwhile, the parameter size and GFLOPs of SuperYOLO are about 18 times and 3.8 times less than YOLOv5x. Our proposed model shows a favorable accuracy and speed tradeoff compared to the state-of-the-art models. The code will be open-sourced at https://github.com/icey-zhang/SuperYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大虫子发布了新的文献求助10
刚刚
杨冰发布了新的文献求助10
1秒前
Olsters完成签到 ,获得积分10
1秒前
米尔的猫发布了新的文献求助10
1秒前
动漫大师发布了新的文献求助10
2秒前
xiaixax完成签到,获得积分10
3秒前
斩妖凉发布了新的文献求助10
5秒前
8秒前
善学以致用应助米尔的猫采纳,获得10
8秒前
科研通AI5应助LLL采纳,获得10
9秒前
9秒前
丘比特应助Michaelfall采纳,获得10
11秒前
zhangxinask发布了新的文献求助20
12秒前
秋子发布了新的文献求助10
13秒前
星星发布了新的文献求助10
14秒前
17秒前
song完成签到,获得积分10
18秒前
桐桐应助WYN采纳,获得100
20秒前
21秒前
21秒前
strug783发布了新的文献求助10
22秒前
完美世界应助俞绯采纳,获得10
23秒前
23秒前
科研通AI5应助大象放冰箱采纳,获得30
24秒前
英姑应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
26秒前
26秒前
科研通AI5应助秋子采纳,获得10
26秒前
liangchenglvliao完成签到 ,获得积分10
27秒前
28秒前
Gypsy发布了新的文献求助10
28秒前
复杂静竹发布了新的文献求助10
28秒前
zhangxinask完成签到,获得积分10
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648