RUIESR: Realistic Underwater Image Enhancement and Super Resolution

水下 人工智能 计算机科学 计算机视觉 先验概率 失真(音乐) 图像分辨率 RGB颜色模型 迭代重建 图像(数学) 贝叶斯概率 计算机网络 海洋学 地质学 放大器 带宽(计算)
作者
Yinyi Li,Liquan Shen,Mengyao Li,Zhengyong Wang,Lihao Zhuang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4713-4728 被引量:5
标识
DOI:10.1109/tcsvt.2023.3328785
摘要

Clear and high-resolution (HR) underwater images are indispensable in acquiring underwater information. However, existing underwater image enhancement and super-resolution (UIESR) networks achieve limited enhancement-super-resolution performance on real-world turbid low-resolution (LR) underwater images because (1) they assume that the resolution degradation is simple and known bicubic down-sampling, generating unrealistic training data for UIESR task; (2) they extract known priors from the underwater imaging model, which is meager to address complex UIESR problems caused by unknown mixed dual-degradation; and (3) they ignore the interaction between blurring and color casts in the RGB color space, leading to unsatisfactory correction results of two distortions. To address these issues, we propose a realistic UIESR network (RUIESR) consisting of three parts: a realistic LR image generation module (RLGM), a dual-degradation estimation module (DEM), and an enhancement and super-resolution module (ESRM). Firstly, RLGM aims to generate LR images obeying underwater LR image distribution by learning real LR properties from unpaired real LR-HR underwater images for training. Secondly, a contrast-driven learning strategy is proposed in the DEM to accurately estimate unknown dual-degradation priors that can aid the reconstruction task. Finally, ESRM is proposed to enhance textures and correct color casts, which includes a dual-branch structure to separate blurring and color casts distortions and utilizes specific priors for each distortion to assist reconstruction. Extensive experiments on real and synthetic underwater datasets show that the proposed RUIESR outperforms existing works regarding visual quality and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy发布了新的文献求助10
1秒前
兔子发布了新的文献求助10
1秒前
2秒前
YuchaoJia发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
guo应助核桃采纳,获得30
4秒前
深情安青应助核桃采纳,获得10
4秒前
bkagyin应助核桃采纳,获得10
4秒前
科研通AI5应助核桃采纳,获得10
4秒前
完美世界应助核桃采纳,获得10
4秒前
orixero应助核桃采纳,获得10
4秒前
Orange应助核桃采纳,获得10
5秒前
现代雁桃发布了新的文献求助10
5秒前
5秒前
朴实凝雁完成签到,获得积分10
7秒前
7秒前
Mr.Su应助这颗糖好tian采纳,获得10
8秒前
yesyesok发布了新的文献求助10
8秒前
jiboya发布了新的文献求助10
8秒前
wy完成签到,获得积分10
8秒前
雾黎颖完成签到 ,获得积分10
8秒前
HSD发布了新的文献求助10
9秒前
9秒前
Ccc发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
一谩完成签到,获得积分10
10秒前
蓝天应助ljs采纳,获得10
11秒前
华仔应助苹果傲菡采纳,获得10
11秒前
12秒前
13秒前
GXH完成签到,获得积分20
13秒前
13秒前
14秒前
15秒前
机灵柚子应助hsyh采纳,获得10
15秒前
16秒前
16秒前
FashionBoy应助yesyesok采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4218043
求助须知:如何正确求助?哪些是违规求助? 3751980
关于积分的说明 11797979
捐赠科研通 3416666
什么是DOI,文献DOI怎么找? 1875110
邀请新用户注册赠送积分活动 928945
科研通“疑难数据库(出版商)”最低求助积分说明 837876