BertNDA: A Model Based on Graph-Bert and Multi-Scale Information Fusion for ncRNA-Disease Association Prediction

计算机科学 成对比较 人工智能 机器学习 非编码RNA 数据挖掘 核糖核酸 生物 生物化学 基因
作者
Zhiwei Ning,Jinyang Wu,Yidong Ding,Ying Wang,Qinke Peng,Laiyi Fu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5655-5664 被引量:5
标识
DOI:10.1109/jbhi.2023.3311808
摘要

Non-coding RNAs (ncRNAs) are a class of RNA molecules that lack the ability to encode proteins in human cells, but play crucial roles in various biological process. Understanding the interactions between different ncRNAs and their impact on diseases can significantly contribute to diagnosis, prevention, and treatment of diseases. However, predicting tertiary interactions between ncRNAs and diseases based on structural information in multiple scales remains a challenging task. To address this challenge, we propose a method called BertNDA, aiming to predict potential relationships between miRNAs, lncRNAs, and diseases. The framework identifies the local information through connectionless subgraph, which aggregate neighbor nodes' feature. And global information is extracted by leveraging Laplace transform of graph structures and WL (Weisfeiler-Lehman) absolute role coding. Additionally, an EMLP (Element-wise MLP) structure is designed to fuse pairwise global information. The transformer-encoder is employed as the backbone of our approach, followed by a prediction-layer to output the final correlation score. Extensive experiments demonstrate that BertNDA outperforms state-of-the-art methods in prediction assignment and exhibits significant potential for various biological applications. Moreover, we develop an online prediction platform that incorporates the prediction model, providing users with an intuitive and interactive experience. Overall, our model offers an efficient, accurate, and comprehensive tool for predicting tertiary associations between ncRNAs and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助大牛顿采纳,获得10
刚刚
1秒前
南非的猫发布了新的文献求助10
1秒前
CR7应助女王陛下采纳,获得20
1秒前
zho发布了新的文献求助10
1秒前
爆米花应助CinemaAAA采纳,获得10
1秒前
大气早晨发布了新的文献求助10
2秒前
2秒前
Wendy发布了新的文献求助10
2秒前
木棉完成签到,获得积分10
3秒前
3秒前
熊二的蜂蜜罐头完成签到,获得积分10
4秒前
6秒前
饼子发布了新的文献求助10
6秒前
稳重诗珊完成签到,获得积分10
6秒前
lily完成签到 ,获得积分10
7秒前
南非的猫完成签到,获得积分10
7秒前
三连环发布了新的文献求助10
8秒前
Tess发布了新的文献求助10
8秒前
Ava应助fuchao采纳,获得10
10秒前
10秒前
12秒前
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
meng完成签到,获得积分10
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
鸣笛应助科研通管家采纳,获得50
12秒前
爆米花应助科研通管家采纳,获得10
13秒前
不安青牛应助科研通管家采纳,获得20
13秒前
王思睿应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
13秒前
魚子应助科研通管家采纳,获得30
13秒前
ys完成签到,获得积分10
13秒前
大个应助大气早晨采纳,获得30
14秒前
Eric发布了新的文献求助10
14秒前
1111111111111完成签到,获得积分10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065652
求助须知:如何正确求助?哪些是违规求助? 3604268
关于积分的说明 11446997
捐赠科研通 3326727
什么是DOI,文献DOI怎么找? 1828856
邀请新用户注册赠送积分活动 899026
科研通“疑难数据库(出版商)”最低求助积分说明 819410