Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy

人工智能 上颌窦 计算机科学 医学 深度学习 目标检测 牙科 分割
作者
Peisheng Zeng,Rihui Song,Yixiong Lin,Haopeng Li,Shijie Chen,Mengru Shi,Gengbin Cai,Zhuohong Gong,Kai Huang,Zetao Chen
出处
期刊:Journal of Oral Rehabilitation [Wiley]
卷期号:50 (12): 1465-1480 被引量:5
标识
DOI:10.1111/joor.13585
摘要

Pathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine.To develop a deep-learning-based screening model incorporating object detection and 'straight-forward' classification strategy to screen out maxillary sinus abnormalities on CBCT images.The large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and 'straight-forward' classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a 'normal-or-not' classification.We successfully constructed a deep-learning model consist of well-trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut-off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist-model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction.The deep-learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevin完成签到 ,获得积分10
刚刚
赎罪发布了新的文献求助10
1秒前
skr发布了新的文献求助10
2秒前
6秒前
吴仙女完成签到,获得积分10
7秒前
Moon完成签到 ,获得积分10
8秒前
Seameng完成签到 ,获得积分10
8秒前
hhh完成签到 ,获得积分10
10秒前
禹代秋发布了新的文献求助10
11秒前
aoba完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Wang Mu完成签到,获得积分10
14秒前
英俊的铭应助山丘采纳,获得10
15秒前
15秒前
汉堡包应助keke采纳,获得10
16秒前
DE发布了新的文献求助50
17秒前
所所应助於依白采纳,获得10
17秒前
解语花发布了新的文献求助10
18秒前
orixero应助skr采纳,获得10
19秒前
hhh发布了新的文献求助10
19秒前
keen完成签到 ,获得积分10
21秒前
Leon发布了新的文献求助10
21秒前
qwe发布了新的文献求助10
22秒前
25秒前
吴仙女发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助30
28秒前
一一应助smin采纳,获得10
28秒前
彭于晏应助会笑的猪猪猫采纳,获得10
29秒前
30秒前
风清扬发布了新的文献求助10
30秒前
31秒前
说几句完成签到,获得积分10
31秒前
李健的粉丝团团长应助Yezo采纳,获得10
32秒前
冷酷雨发布了新的文献求助10
35秒前
迪仔发布了新的文献求助30
35秒前
yujianhong发布了新的文献求助10
39秒前
Orange应助zyw采纳,获得10
39秒前
cc发布了新的文献求助10
40秒前
joshar发布了新的文献求助10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260103
求助须知:如何正确求助?哪些是违规求助? 3792910
关于积分的说明 11896388
捐赠科研通 3440611
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938973
科研通“疑难数据库(出版商)”最低求助积分说明 844349