Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy

人工智能 上颌窦 计算机科学 医学 深度学习 目标检测 牙科 分割
作者
Peisheng Zeng,Rihui Song,Yixiong Lin,Haopeng Li,Shijie Chen,Mengru Shi,Gengbin Cai,Zhuohong Gong,Kai Huang,Zetao Chen
出处
期刊:Journal of Oral Rehabilitation [Wiley]
卷期号:50 (12): 1465-1480 被引量:5
标识
DOI:10.1111/joor.13585
摘要

Pathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine.To develop a deep-learning-based screening model incorporating object detection and 'straight-forward' classification strategy to screen out maxillary sinus abnormalities on CBCT images.The large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and 'straight-forward' classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a 'normal-or-not' classification.We successfully constructed a deep-learning model consist of well-trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut-off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist-model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction.The deep-learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我叫高帅完成签到,获得积分20
刚刚
上官若男应助年华采纳,获得10
1秒前
呆萌笑晴完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
香蕉觅云应助专注乐驹采纳,获得10
2秒前
科研通AI5应助cap采纳,获得30
2秒前
想不到吧完成签到,获得积分10
3秒前
Dora完成签到,获得积分10
4秒前
11446发布了新的文献求助30
5秒前
5秒前
5秒前
我叫高帅发布了新的文献求助10
6秒前
6秒前
自由背包发布了新的文献求助10
7秒前
科研通AI5应助xianxian采纳,获得10
7秒前
我是老大应助Flllllll采纳,获得10
8秒前
天意不可违完成签到,获得积分10
8秒前
云云的困困完成签到,获得积分10
8秒前
Ari_Kun完成签到 ,获得积分10
8秒前
8秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
刀锋完成签到,获得积分10
9秒前
SilverPlane完成签到,获得积分10
9秒前
霹雳枕头应助科研通管家采纳,获得10
9秒前
yy2023发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
Sweet完成签到,获得积分10
10秒前
大个应助彳亍而行采纳,获得10
11秒前
南昌黑人完成签到,获得积分10
11秒前
11秒前
充电宝应助路飞采纳,获得10
12秒前
12秒前
upupup发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787504
求助须知:如何正确求助?哪些是违规求助? 3333123
关于积分的说明 10259380
捐赠科研通 3048609
什么是DOI,文献DOI怎么找? 1673150
邀请新用户注册赠送积分活动 801719
科研通“疑难数据库(出版商)”最低求助积分说明 760324