Accurate expression of neck motion signal by piezoelectric sensor data analysis

小波 信号(编程语言) 噪音(视频) 灵敏度(控制系统) 压阻效应 计算机科学 降噪 声学 波形 信号处理 人工智能 材料科学 电子工程 物理 工程类 光电子学 电信 图像(数学) 程序设计语言 雷达
作者
Shi Neng,Haonan Jia,Jixiang Zhang,Pengyu Lu,Chenglong Cai,Yixin Zhang,Liqiang Zhang,Nongyue He,Weiran Zhu,Yan Cai,Zhang‐Qi Feng,Ting Wang
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:35 (9): 109302-109302 被引量:7
标识
DOI:10.1016/j.cclet.2023.109302
摘要

The development of high-precision sensors using flexible piezoelectric materials has the advantages of high sensitivity, high stability, good durability, and lightweight. The main problem with sensing equipment is low sensitivity, which is due to the mismatch between materials and analysis methods, resulting in the inability to effectively eliminate noise. To address this issue, we developed the denoising analysis method to motion signals captured by a flexible piezoelectric sensor fabricated from poly-L-lactic acid (PLLA) and polydimethylsiloxane (PDMS) materials. Experimental results demonstrate that this improved denoising method effectively removes noise components from neck muscle motion signals, thus obtaining high-quality, low-noise motion signal waveforms. Wavelet decomposition and reconstruction is a signal processing technique that involves decomposing a signal into different scales and frequency components using wavelets and then selectively reconstructing the signal to emphasize specific features or eliminate noise. The study employed the sym8 wavelet basis for wavelet decomposition and reconstruction. In the denoised signals, a high degree of stability and periodic peaks are distinctly manifested, while amplitude and frequency differences among different types of movements also become noticeably visible. As a result of this study, we are enabled to accurately analyze subtle variations in neck muscle motion signals, such as nodding, shaking the head, neck lateral flexion, and neck circles. Through temporal and frequency domain analysis of denoised motion signals, differentiation among various motion states can be achieved. Overall, this improved analytical approach holds broad application prospects across various types of piezoelectric sensors, such as healthcare monitoring, sports biomechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助要减肥世开采纳,获得30
1秒前
3秒前
HCL完成签到,获得积分10
3秒前
科研通AI5应助Ryuki采纳,获得10
3秒前
nicelily发布了新的文献求助10
4秒前
wuchun完成签到,获得积分10
4秒前
粱踏歌发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助寒冷的水桃采纳,获得30
8秒前
重楼又上一支蒿完成签到,获得积分10
8秒前
12秒前
keke完成签到,获得积分10
12秒前
烂漫耳机发布了新的文献求助10
13秒前
山火完成签到,获得积分20
14秒前
Sea_U应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得30
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
Ava应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得20
16秒前
雨夜星空应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
leez完成签到,获得积分10
18秒前
18秒前
稳重奇异果应助Su采纳,获得10
19秒前
山火发布了新的文献求助10
19秒前
慕青应助nicelily采纳,获得10
21秒前
22秒前
KIE发布了新的文献求助10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776633
求助须知:如何正确求助?哪些是违规求助? 3322152
关于积分的说明 10208826
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757921