Using large language models in psychology

转化式学习 透视图(图形) 领域(数学) 心理学 标准化 数据科学 计算机科学 发展心理学 人工智能 数学 纯数学 操作系统
作者
Dorottya Demszky,Diyi Yang,David S. Yeager,Christopher J. Bryan,Margarett Clapper,Susannah Chandhok,Johannes C. Eichstaedt,Cameron A. Hecht,Jeremy P. Jamieson,Meghann Johnson,Michaela Jones,Danielle Krettek-Cobb,Leslie C. Lai,Nirel JonesMitchell,Desmond C. Ong,Carol S. Dweck,James J. Gross,James W. Pennebaker
出处
期刊:Nature Reviews Psychology [Springer Nature]
被引量:216
标识
DOI:10.1038/s44159-023-00241-5
摘要

Large language models (LLMs), such as OpenAI's GPT-4, Google's Bard or Meta's LLaMa, have created unprecedented opportunities for analysing and generating language data on a massive scale. Because language data have a central role in all areas of psychology, this new technology has the potential to transform the field. In this Perspective, we review the foundations of LLMs. We then explain how the way that LLMs are constructed enables them to effectively generate human-like linguistic output without the ability to think or feel like a human. We argue that although LLMs have the potential to advance psychological measurement, experimentation and practice, they are not yet ready for many of the most transformative psychological applications — but further research and development may enable such use. Next, we examine four major concerns about the application of LLMs to psychology, and how each might be overcome. Finally, we conclude with recommendations for investments that could help to address these concerns: field-initiated 'keystone' datasets; increased standardization of performance benchmarks; and shared computing and analysis infrastructure to ensure that the future of LLM-powered research is equitable. Large language models (LLMs), which can generate and score text in human-like ways, have the potential to advance psychological measurement, experimentation and practice. In this Perspective, Demszky and colleagues describe how LLMs work, concerns about using them for psychological purposes, and how these concerns might be addressed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yunni发布了新的文献求助10
1秒前
2秒前
情怀应助善良的冥茗采纳,获得10
3秒前
3秒前
3秒前
4秒前
hay发布了新的文献求助10
4秒前
旺小涵发布了新的文献求助10
5秒前
popo完成签到,获得积分10
5秒前
5秒前
5秒前
坚定晓博发布了新的文献求助10
6秒前
ranj发布了新的文献求助10
7秒前
8秒前
高高发布了新的文献求助10
8秒前
华仔应助小泡芙采纳,获得10
8秒前
科研民工完成签到,获得积分10
8秒前
9秒前
鳗鱼白开水完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
阔达的柠檬完成签到 ,获得积分10
11秒前
PPD发布了新的文献求助10
11秒前
12秒前
幽默白竹发布了新的文献求助10
13秒前
牛京发布了新的文献求助30
14秒前
14秒前
15秒前
科研通AI5应助染墨绘梨衣采纳,获得30
15秒前
16秒前
xue发布了新的文献求助10
17秒前
17秒前
sulyspr发布了新的文献求助10
17秒前
18秒前
搜集达人应助凝安采纳,获得10
18秒前
18秒前
李健的小迷弟应助露露采纳,获得10
18秒前
叶泠渊发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195002
求助须知:如何正确求助?哪些是违规求助? 4377166
关于积分的说明 13631639
捐赠科研通 4232420
什么是DOI,文献DOI怎么找? 2321600
邀请新用户注册赠送积分活动 1319718
关于科研通互助平台的介绍 1270166