Deep learning for automated measurement of CSA related acromion morphological parameters on anteroposterior radiographs

医学 射线照相术 肩峰 核医学 分割 人工智能 皮尔逊积矩相关系数 肩袖 放射科 计算机科学 统计 数学
作者
Yamuhanmode Alike,Cheng Li,Jingyi Hou,Yi Liu,Zongda Zhang,Mengjie Ye,Rui Yang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:168: 111083-111083
标识
DOI:10.1016/j.ejrad.2023.111083
摘要

The Critical Shoulder Angle Related Acromion Morphological Parameter (CSA- RAMP) is a valuable tool in the analyzing the etiology of the rotator cuff tears (RCTs). However, its clinical application has been limited by the time-consuming and prone to inter- and intra-user variability of the measurement process.To develop and validate a deep learning algorithm for fully automated assessment of shoulder anteroposterior radiographs associated with RCTs and calculation of CSA-RAMP.Retrospective analysis was conducted on radiographs obtained from computed tomography (CT) scans and X-rays performed between 2018 and 2020 at our institution. The development of the system involved the utilization of digitally reconstructed radiographs (DRRs) generated from each CT scan. The system's performance was evaluated by comparing it with manual and semiautomated measurements on two separate test datasets: dataset I (DRRs) and dataset II (X-rays). Standard metrics, including mean average precision (AP), were utilized to assess the segmentation performance. Additionally, the consistency among fully automated, semiautomated, and manual measurements was comprehensively evaluated using the Pearson correlation coefficient and Bland-Altman analysis.A total of 1080 DRRs generated from 120 consecutive CT scans and 159 X-ray films were included in the study. The algorithm demonstrated excellent segmentation performance, with a mean AP of 57.67 and an AP50 of 94.31. Strong inter-group correlations were observed for all CSA-RAMP measurements in both test datasets I (automated versus manual, automated versus semiautomated, and semiautomated versus manual; r = [0.990---0.997], P < 0.001) and dataset II (r = [0.984---0.995], P < 0.001). Bland-Altman analysis revealed low bias for all CSA-RAMP measurements in both test datasets I and II, except for CD (with a maximum bias of 2.49%).We have successfully developed a fully automated algorithm capable of rapidly and accurately measuring CSA-RAMP on shoulder anteroposterior radiographs. A consistent automated CSA- RAMP measurement system may accelerate powerful and precise studies of disease biology in future large cohorts of RCTs patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
54完成签到,获得积分10
刚刚
笑点低的元枫完成签到 ,获得积分10
刚刚
turui完成签到 ,获得积分10
3秒前
NiNi完成签到,获得积分10
5秒前
hongt05完成签到 ,获得积分10
7秒前
mmiww完成签到,获得积分10
10秒前
爱听歌的谷蓝完成签到 ,获得积分10
12秒前
领导范儿应助YC采纳,获得30
14秒前
奶油泡fu完成签到 ,获得积分10
15秒前
ding应助τ涛采纳,获得10
15秒前
Amanda完成签到 ,获得积分10
15秒前
热心雪一完成签到 ,获得积分10
17秒前
学术laji完成签到 ,获得积分10
17秒前
XIEMIN完成签到,获得积分10
17秒前
华仔应助学习采纳,获得10
17秒前
奥斯卡完成签到,获得积分10
21秒前
Beyond095完成签到,获得积分10
22秒前
breaking完成签到,获得积分10
25秒前
25秒前
星海殇完成签到 ,获得积分0
25秒前
白石溪完成签到 ,获得积分10
26秒前
旺仔完成签到 ,获得积分10
29秒前
29秒前
τ涛完成签到,获得积分10
30秒前
科研通AI2S应助8y24dp采纳,获得10
32秒前
τ涛发布了新的文献求助10
32秒前
32秒前
roclie完成签到,获得积分10
32秒前
宇宙飞船2436完成签到,获得积分10
33秒前
PG完成签到 ,获得积分0
33秒前
jeronimo完成签到,获得积分10
34秒前
TUTU完成签到,获得积分10
35秒前
gyhmybsy完成签到,获得积分10
37秒前
:!完成签到,获得积分10
37秒前
帆320发布了新的文献求助10
37秒前
发过的烦得很完成签到 ,获得积分10
39秒前
taozidetao完成签到 ,获得积分10
39秒前
guoxihan完成签到,获得积分10
39秒前
我是老大应助YU采纳,获得10
39秒前
叮叮当当完成签到,获得积分10
42秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921