亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative Extrapancreatic Extension Prediction in Patients with Pancreatic Cancer Using Multiparameter MRI and Machine Learning-Based Radiomics Model

无线电技术 随机森林 人工智能 医学 接收机工作特性 试验装置 特征选择 计算机科学 胰腺癌 放射科 机器学习 癌症 内科学
作者
Ni Xie,Xuhui Fan,Haoran Xie,Jiawei Lu,Lanting Yu,Hao Liu,Han Wang,Xiaorui Yin,Baiwen Li
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (7): 1306-1316 被引量:7
标识
DOI:10.1016/j.acra.2022.09.017
摘要

Rationale and Objectives Pancreatic cancer is a common malignant tumor with a dismal prognosis. Preoperative differentiation of extrapancreatic extension (EPE) based on radiomics will facilitate treatment decision-making. Materials and Methods This research retrospectively recruited 156 patients from two medical centers. 122 patients from the center A were randomly divided into the training set and the internal test set in a 4:1 ratio. Additionally, 34 patients from the center B served as the external test set. Radiomics features were extracted from multiparametric MRI (MP-MRI), containing axial T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic contrast enhancement (DCE) sequences. The three-step method was used for feature extraction: SelecteKBest, least absolute shrinkage and selection operator (LASSO) algorithm, and recursive feature elimination based on random forest (RFE-RF). The model was constructed using six classifiers based on machine learning, and the classifier with the best performance was chosen. Finally, clinical factors associated with EPE were incorporated into the combined model. Results The classifier with the best performance was XGBoost, which obtained area under curve (AUC) values of 0.853 and 0.848 in the internal and external test sets, respectively. Through SelectKBest, the most relevant clinical factor for EPE was determined to be platelet, which was then added to the combined model, yielding AUC values of 0.880 and 0.848 in the internal and external test sets, respectively. Conclusion Radiomics models had the potential to noninvasively and accurately predict EPE before surgery. Additionally, it would add value to personalized precision treatment. Pancreatic cancer is a common malignant tumor with a dismal prognosis. Preoperative differentiation of extrapancreatic extension (EPE) based on radiomics will facilitate treatment decision-making. This research retrospectively recruited 156 patients from two medical centers. 122 patients from the center A were randomly divided into the training set and the internal test set in a 4:1 ratio. Additionally, 34 patients from the center B served as the external test set. Radiomics features were extracted from multiparametric MRI (MP-MRI), containing axial T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic contrast enhancement (DCE) sequences. The three-step method was used for feature extraction: SelecteKBest, least absolute shrinkage and selection operator (LASSO) algorithm, and recursive feature elimination based on random forest (RFE-RF). The model was constructed using six classifiers based on machine learning, and the classifier with the best performance was chosen. Finally, clinical factors associated with EPE were incorporated into the combined model. The classifier with the best performance was XGBoost, which obtained area under curve (AUC) values of 0.853 and 0.848 in the internal and external test sets, respectively. Through SelectKBest, the most relevant clinical factor for EPE was determined to be platelet, which was then added to the combined model, yielding AUC values of 0.880 and 0.848 in the internal and external test sets, respectively. Radiomics models had the potential to noninvasively and accurately predict EPE before surgery. Additionally, it would add value to personalized precision treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci2025opt完成签到 ,获得积分10
38秒前
CMUSK完成签到,获得积分10
51秒前
1分钟前
1分钟前
CipherSage应助Cathy采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Virtual完成签到,获得积分0
2分钟前
3分钟前
Cathy发布了新的文献求助10
3分钟前
UsihaGuwalgiya完成签到,获得积分20
4分钟前
jokerhoney完成签到,获得积分10
4分钟前
trophozoite完成签到 ,获得积分10
4分钟前
001完成签到,获得积分10
5分钟前
6分钟前
Cathy完成签到,获得积分10
6分钟前
bellapp完成签到 ,获得积分10
6分钟前
003完成签到,获得积分10
7分钟前
科目三应助江洋大盗采纳,获得10
7分钟前
7分钟前
江洋大盗发布了新的文献求助10
7分钟前
李志全完成签到 ,获得积分10
7分钟前
HalaMadrid发布了新的文献求助20
8分钟前
yzhilson完成签到 ,获得积分0
9分钟前
YifanWang应助科研通管家采纳,获得10
10分钟前
YifanWang应助科研通管家采纳,获得10
10分钟前
YifanWang应助科研通管家采纳,获得10
10分钟前
YifanWang应助科研通管家采纳,获得10
10分钟前
魁梧的诗柳应助xbchen采纳,获得10
11分钟前
002完成签到,获得积分10
13分钟前
HalaMadrid完成签到,获得积分10
13分钟前
ZW完成签到,获得积分10
14分钟前
YifanWang应助科研通管家采纳,获得10
14分钟前
YifanWang应助科研通管家采纳,获得10
14分钟前
要减肥面包完成签到 ,获得积分10
14分钟前
mm完成签到 ,获得积分10
15分钟前
YifanWang应助科研通管家采纳,获得40
16分钟前
kuoping完成签到,获得积分0
16分钟前
Hiker完成签到,获得积分10
17分钟前
lulu1234完成签到,获得积分20
17分钟前
Sunny完成签到,获得积分10
18分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4444248
求助须知:如何正确求助?哪些是违规求助? 3914972
关于积分的说明 12155186
捐赠科研通 3563499
什么是DOI,文献DOI怎么找? 1956390
邀请新用户注册赠送积分活动 996080
科研通“疑难数据库(出版商)”最低求助积分说明 891354