Physicochemical QSAR analysis of hERG inhibition revisited: towards a quantitative potency prediction

赫尔格 可解释性 数量结构-活动关系 广告 计算机科学 交叉验证 药物发现 适用范围 效力 数据挖掘 人工智能 机器学习 化学 药品 药理学 医学 钾通道 内分泌学 体外 生物化学
作者
Kiril Lanevskij,Remigijus Didžiapetris,Andrius Sazonovas
出处
期刊:Journal of Computer-aided Molecular Design [Springer Science+Business Media]
卷期号:36 (12): 837-849 被引量:12
标识
DOI:10.1007/s10822-022-00483-0
摘要

In an earlier study (Didziapetris R & Lanevskij K (2016). J Comput Aided Mol Des. 30:1175-1188) we collected a database of publicly available hERG inhibition data for almost 6700 drug-like molecules and built a probabilistic Gradient Boosting classifier with a minimal set of physicochemical descriptors (log P, pKa, molecular size and topology parameters). This approach favored interpretability over statistical performance but still achieved an overall classification accuracy of 75%. In the current follow-up work we expanded the database (provided in Supplementary Information) to almost 9400 molecules and performed temporal validation of the model on a set of novel chemicals from recently published lead optimization projects. Validation results showed almost no performance degradation compared to the original study. Additionally, we rebuilt the model using AFT (Accelerated Failure Time) learning objective in XGBoost, which accepts both quantitative and censored data often reported in protein inhibition studies. The new model achieved a similar level of accuracy of discerning hERG blockers from non-blockers at 10 µM threshold, which can be conceived as close to the performance ceiling for methods aiming to describe only non-specific ligand interactions with hERG. Yet, this model outputs quantitative potency values (IC50) and is not tied to a particular classification cut-off. pIC50 from patch-clamp measurements can be predicted with R2 ≈ 0.4 and MAE < 0.5, which enables ligand ranking according to their expected potency levels. The employed approach can be valuable for quantitative modeling of various ADME and drug safety endpoints with a high prevalence of censored data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paul完成签到,获得积分10
2秒前
2秒前
drift完成签到,获得积分10
3秒前
星际牛仔发布了新的文献求助10
3秒前
gattina完成签到,获得积分10
5秒前
6秒前
笑点低的盼山完成签到,获得积分20
6秒前
6秒前
万万完成签到,获得积分10
7秒前
2333发布了新的文献求助10
8秒前
酷波er应助自由的傲易采纳,获得10
10秒前
李爱国应助nice采纳,获得30
11秒前
Sssun17完成签到 ,获得积分10
11秒前
11秒前
tx发布了新的文献求助10
11秒前
陈佳欣发布了新的文献求助20
12秒前
13秒前
彩色的荔枝完成签到 ,获得积分10
14秒前
刘芝君完成签到,获得积分10
14秒前
正在进行时完成签到,获得积分20
15秒前
小王完成签到,获得积分10
15秒前
星际牛仔完成签到,获得积分10
16秒前
子车茗应助钱念波采纳,获得30
16秒前
moomoo完成签到 ,获得积分10
16秒前
科研通AI2S应助2333采纳,获得10
16秒前
17秒前
18秒前
酷波er应助一个小胖子采纳,获得10
18秒前
23秒前
24秒前
情怀应助Happer采纳,获得10
24秒前
打打应助苏苏苏采纳,获得10
25秒前
mnlxx14完成签到,获得积分10
26秒前
361完成签到,获得积分10
26秒前
CodeCraft应助正在进行时采纳,获得10
28秒前
Sssun17关注了科研通微信公众号
28秒前
28秒前
29秒前
361发布了新的文献求助10
29秒前
西原的橙果完成签到,获得积分10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348237
关于积分的说明 10337188
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682449
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010