亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting adolescent depression and anxiety from multi-wave longitudinal data using machine learning

焦虑 心理学 精神病理学 萧条(经济学) 纵向研究 临床心理学 性情 人格 精神科 医学 社会心理学 宏观经济学 病理 经济
作者
Mariah T. Hawes,H. Andrew Schwartz,Youngseo Son,Daniel N. Klein
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (13): 6205-6211 被引量:6
标识
DOI:10.1017/s0033291722003452
摘要

This study leveraged machine learning to evaluate the contribution of information from multiple developmental stages to prospective prediction of depression and anxiety in mid-adolescence.A community sample (N = 374; 53.5% male) of children and their families completed tri-annual assessments across ages 3-15. The feature set included several important risk factors spanning psychopathology, temperament/personality, family environment, life stress, interpersonal relationships, neurocognitive, hormonal, and neural functioning, and parental psychopathology and personality. We used canonical correlation analysis (CCA) to reduce the large feature set to a lower dimensional space while preserving the longitudinal structure of the data. Ablation analysis was conducted to evaluate the relative contributions to prediction of information gathered at different developmental periods and relative to previous disorder status (i.e. age 12 depression or anxiety) and demographics (sex, race, ethnicity).CCA components from individual waves predicted age 15 disorder status better than chance across ages 3, 6, 9, and 12 for anxiety and 9 and 12 for depression. Only the components from age 12 for depression, and ages 9 and 12 for anxiety, improved prediction over prior disorder status and demographics.These findings suggest that screening for risk of adolescent depression can be successful as early as age 9, while screening for risk of adolescent anxiety can be successful as early as age 3. Assessing additional risk factors at age 12 for depression, and going back to age 9 for anxiety, can improve screening for risk at age 15 beyond knowing standard demographics and disorder history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉梨愁发布了新的文献求助30
2秒前
4秒前
立夏完成签到,获得积分10
8秒前
10秒前
chenmo完成签到,获得积分10
11秒前
11秒前
Omni完成签到,获得积分10
12秒前
在水一方应助香蕉梨愁采纳,获得10
13秒前
Ancy发布了新的文献求助10
14秒前
Lucas应助酷炫的荧采纳,获得10
19秒前
fat完成签到,获得积分10
20秒前
Ancy发布了新的文献求助10
22秒前
22秒前
jiang发布了新的文献求助10
27秒前
28秒前
Nico应助苹果紫采纳,获得10
32秒前
32秒前
香蕉梨愁发布了新的文献求助30
36秒前
Ancy发布了新的文献求助30
38秒前
andrele完成签到,获得积分10
42秒前
深情的友易完成签到 ,获得积分10
44秒前
48秒前
23应助科研通管家采纳,获得20
50秒前
代芙应助科研通管家采纳,获得10
50秒前
顾矜应助科研通管家采纳,获得30
50秒前
代芙应助科研通管家采纳,获得10
50秒前
核桃应助科研通管家采纳,获得30
50秒前
50秒前
代芙应助科研通管家采纳,获得10
50秒前
50秒前
Ancy发布了新的文献求助10
53秒前
麻瓜完成签到,获得积分10
55秒前
车厘子完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
狮子清明尊完成签到,获得积分10
1分钟前
Ancy发布了新的文献求助10
1分钟前
善良的静曼完成签到 ,获得积分10
1分钟前
1分钟前
赝品也烂漫完成签到,获得积分10
1分钟前
高分求助中
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098748
求助须知:如何正确求助?哪些是违规求助? 3636335
关于积分的说明 11525359
捐赠科研通 3346329
什么是DOI,文献DOI怎么找? 1839138
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823812