亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms

免疫系统 生物 分类器(UML) 败血症 自噬 计算生物学 机器学习 获得性免疫系统 支持向量机 人工智能 免疫学 生物信息学 计算机科学 遗传学 细胞凋亡
作者
Zhen Chen,Liming Zeng,Genglong Liu,Yangpeng Ou,Chuangang Lu,Ben Yang,Liuer Zuo
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 15: 6165-6186 被引量:18
标识
DOI:10.2147/jir.s386714
摘要

The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood. A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier. A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein. Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabius0351完成签到 ,获得积分10
2秒前
3秒前
mmyhn发布了新的文献求助10
6秒前
PYF完成签到,获得积分10
31秒前
1分钟前
善学以致用应助zjq采纳,获得10
1分钟前
kiko完成签到,获得积分10
1分钟前
Lx030324发布了新的文献求助10
1分钟前
李爱国应助Han.T采纳,获得10
1分钟前
2分钟前
David发布了新的文献求助50
2分钟前
畜牧笑笑发布了新的文献求助10
2分钟前
长京完成签到,获得积分10
2分钟前
Lx030324完成签到,获得积分10
2分钟前
2分钟前
杏林小郑完成签到 ,获得积分10
2分钟前
ding应助西瓜汽水采纳,获得10
2分钟前
2分钟前
西瓜汽水发布了新的文献求助10
2分钟前
3分钟前
3分钟前
电池菜鸟发布了新的文献求助10
3分钟前
3分钟前
1643872162发布了新的文献求助10
3分钟前
邵诗颖应助1643872162采纳,获得30
3分钟前
可爱的函函应助咸鱼一号采纳,获得10
4分钟前
大闲鱼铭一完成签到 ,获得积分10
4分钟前
Rocky完成签到,获得积分10
4分钟前
酷酷友容应助Rocky采纳,获得10
4分钟前
4分钟前
4分钟前
korchid发布了新的文献求助10
4分钟前
4分钟前
ljj发布了新的文献求助10
4分钟前
科目三应助korchid采纳,获得10
4分钟前
ljj完成签到,获得积分10
5分钟前
3113129605完成签到 ,获得积分10
5分钟前
聪明勇敢有力气完成签到 ,获得积分10
5分钟前
李健的小迷弟应助三土采纳,获得10
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124264
求助须知:如何正确求助?哪些是违规求助? 3662154
关于积分的说明 11590291
捐赠科研通 3362579
什么是DOI,文献DOI怎么找? 1847653
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838