Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson's disease: A systematic review and meta-analysis

生物标志物 荟萃分析 微泡 医学 外体 内科学 疾病 生物信息学 肿瘤科 帕金森病 置信区间 小RNA 生物 遗传学 基因
作者
Irin Sultana Nila,Dewan Md. Sumsuzzman,Zeeshan Ahmad Khan,Jin Ho Jung,Ashura Suleiman Kazema,Sang Jin Kim,Yonggeun Hong
出处
期刊:Ageing Research Reviews [Elsevier BV]
卷期号:82: 101764-101764 被引量:35
标识
DOI:10.1016/j.arr.2022.101764
摘要

Recently, there has been growing interest in exosomal biomarkers for their active targeting and specificity for delivering their cargos (proteins, lipids, nucleic acids) from the parent cell to the recipient cell. Currently, the clinical diagnosis of Parkinson’s disease (PD) is mainly based on a clinician’s neuropsychological examination and motor symptoms (e.g., bradykinesia, rigidity, postural instability, and resting tremor). However, this diagnosis method is not accurate due to overlapping criteria of other neurodegenerative diseases. Exosomes are differentially expressed in PD and a combination of types and contents of exosomes might be used as a biomarker in PD. Here, we systematically reviewed and meta-analyzed exosomal contents, types and sources of exosomes, method of isolation, and protein quantification tools to determine the optimum exosome-related attributes for PD diagnosis. Pubmed, Embase, and ISI Web of Science were searched for relevant studies. 25 studies were included in the meta-analysis. The Ratio of Mean (RoM) with 95% confidence intervals (CI) was calculated to estimate the effect size. Biomarker performances were rated by random-effects meta-analysis with the Restricted Maximum Likelihood (REML) method. The study protocol is available at PROSPERO (CRD42022331885). Exosomal α-synuclein (α-Syn) was significantly altered in PD patients from healthy controls [RoM = 1.67, 95% CI (0.99 to 2.35); p = 0.00] followed by tau [RoM = 1.33, 95% CI (0.79 to 1.87); p = 0.00], PS-129 [RoM = 0.97, 95% CI (0.54 to 1.40); p = 0.00], and DJ-1/PARK7 [RoM = 0.93, 95% CI (0.64 to 1.21); p = 0.00]. Central nervous system derived L1CAM exosome [RoM = 1.24, 95% CI (1.04 to 1.45); p = 0.00] from either plasma [RoM = 1.35, 95% CI (1.09 to 1.61); p = 0.00]; or serum [RoM = 1.47, 95% CI (1.05 to 1.90); p = 0.00] has been found the optimum type of exosome. The exosome isolation by ExoQuick [RoM = 1.16, 95% CI (0.89 to 1.43); p = 0.00] and protein quantification method by ELISA [RoM = 1.28, 95% CI (1.15 to 1.41); p = 0.00] has been found the optimum isolation and quantification method, respectively for PD diagnosis. This meta-analysis suggests that α-Syn in L1CAM exosome derived from blood, isolated by ExoQuick kit, and quantified by ELISA can be used for PD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
斯文败类应助向上采纳,获得10
5秒前
Na发布了新的文献求助10
6秒前
6秒前
eryelv发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
MollyYU完成签到,获得积分10
9秒前
zchao0401发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
gfasdjsjdsjd完成签到,获得积分10
13秒前
充电宝应助清爽的柜子采纳,获得10
13秒前
赘婿应助奋斗的小张采纳,获得10
14秒前
14秒前
南方有我发布了新的文献求助10
16秒前
科研通AI2S应助hongdoupai采纳,获得10
16秒前
17秒前
威武语儿完成签到,获得积分10
18秒前
18秒前
BBIBBI完成签到,获得积分10
19秒前
风中沂完成签到 ,获得积分10
19秒前
Bystander完成签到 ,获得积分10
21秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
旷野发布了新的文献求助10
25秒前
任性迎南发布了新的文献求助10
26秒前
27秒前
朱晓宇完成签到,获得积分10
27秒前
29秒前
深情安青应助Jonathan采纳,获得10
29秒前
29秒前
30秒前
数学真的好难完成签到,获得积分10
32秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4227369
求助须知:如何正确求助?哪些是违规求助? 3760846
关于积分的说明 11821657
捐赠科研通 3421736
什么是DOI,文献DOI怎么找? 1877920
邀请新用户注册赠送积分活动 931095
科研通“疑难数据库(出版商)”最低求助积分说明 838980