Efficient and Stable Topological/Ferroelectric Bi2Te3/SnSe Hetero‐Memristor for In Situ Bionic‐Visual Semi‐Hardware Systems

记忆电阻器 材料科学 原位 铁电性 纳米技术 光电子学 电气工程 电介质 物理 工程类 气象学
作者
Hong Wang,Yusong Tang,Zhisheng Wang,Chang He,Haoning Liu,Renjie Lin,Wenxiang Xu,J.Y. Chen,Shufang Wang,Xiaobing Yan
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202501066
摘要

Abstract As the application of artificial vision systems continues to grow, developing efficient and low‐power visual sensing devices has become a key challenge. Memristors offer tunable conductivity and integrated in‐situ storage and computation functions, making them ideal for low‐cost visual systems. However, most memristors currently face the dual challenges of poor stability and limited optoelectronic synaptic plasticity. Here, a Bi 2 Te 2.7 Se 0.3 /SnSe hetero‐memristor is designed, which combines the advantages of two‐dimensional (2D) topological insulators and 2D ferroelectric materials. The hetero‐memristor performance can be tuned by the SnSe ferroelectric polarization and Bi 2 Te 2.7 Se 0.3 topological surface state, which improve the utilization and mobility of carriers, thereby significantly improving the performance. The high 10 4 ‐cycle stability, average 0.25 µW on/off power, and 2 5 conductive states are achieved. Under different signals, the hetero‐memristor can enable in situ light‐electric conversion and successfully simulate various optoelectronic plasticity behaviors, such as paired‐pulse facilitation, post‐tetanic potentiation, spike rate‐dependent plasticity, etc. Mean while, an efficient in‐situ bionic‐visual semi‐hardware system is constructed based on the 28 × 28 perception hetero‐memristor array. This system efficiently performs satellite image recognition and classification, achieving an accuracy of 97.68%. The research shows that the Bi 2 Te 2.7 Se 0.3 /SnSe hetero‐memristor is with excellent optoelectronic performances and broad application prospects, particularly in brain‐like computing, smart hardware, and storage technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JOKER完成签到,获得积分10
1秒前
1秒前
2秒前
ccalvintan完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
英姑应助qiuyang采纳,获得10
3秒前
3秒前
Lucas应助云深不知处采纳,获得10
4秒前
4秒前
王世杰完成签到 ,获得积分10
5秒前
5秒前
orixero应助ty1996采纳,获得10
5秒前
孙兴燕发布了新的文献求助10
5秒前
6秒前
6秒前
小铃铛发布了新的文献求助10
7秒前
脑洞疼应助小Z采纳,获得30
7秒前
XIU发布了新的文献求助10
7秒前
CuO关闭了CuO文献求助
7秒前
熊健钧发布了新的文献求助10
7秒前
fufu完成签到,获得积分10
8秒前
9秒前
黎音完成签到 ,获得积分10
9秒前
9秒前
泯珉发布了新的文献求助30
9秒前
10秒前
able完成签到,获得积分10
11秒前
11秒前
11秒前
孙兴燕完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助50
11秒前
bkagyin应助神秘猎牛人采纳,获得10
11秒前
李健应助小铃铛采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
爆米花应助好了没了采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4665285
求助须知:如何正确求助?哪些是违规求助? 4046457
关于积分的说明 12515896
捐赠科研通 3738986
什么是DOI,文献DOI怎么找? 2064970
邀请新用户注册赠送积分活动 1094476
科研通“疑难数据库(出版商)”最低求助积分说明 974883