DeepHDAC3i: Leveraging an Interpretable Deep Learning-based Framework for the Accelerated Discovery of HDAC3 Inhibitors

药物发现 计算机科学 深度学习 人工智能 计算生物学 生物 生物信息学
作者
Saeed Ahmed,Nalini Schaduangrat,Ittipat Meewan,Watshara Shoombuatong
标识
DOI:10.1109/tcbbio.2025.3602433
摘要

Epigenetics encompasses dynamic and reversible modifications that regulate gene activity without altering the underlying DNA sequence. Epigenetic processes, including non-coding RNA interactions, and DNA methylation regulate patterns of gene expression by responding to cellular signaling, environmental stimuli, and developmental cues. The balance of histone acetylation is maintained by histone deacetylase (HDAC) and histone acetyltransferase (HAT) activities. Aberrant HDAC upregulation, often seen in cancer cells, disrupts this balance. HDAC inhibitors (HDACi) are thus used in cancer treatment. However, most synthetic HDACis are not specific to HDAC classes or individual members, highlighting the need for highly selective HDAC inhibitors. Machine learning (ML)-driven methods are now recognized as rapid and cost-efficient tools in drug discovery and development, capable of identifying inhibitors solely from SMILES notation, without requiring the 3D ligand structure. Here, we present a novel and interpretable deep learning-based framework, DeepHDAC3i, for accurate in silico identification of HDAC3i using only the SMILES notation. Firstly, we employed five molecular encoding methods, namely CDKExt, KR, KRC, Pubchem, and RDKIT, to extract the biological and structural information in HDAC3i. These molecular representations were then fused to generate multi-view features. Secondly, elastic net was employed to determine the optimal feature subset and enhance prediction performance. Thirdly, a one-dimensional convolutional neural network (1D-CNN) coupled with the optimal feature set was chosen for the construction of the final model. Finally, our framework leveraged the Shapley Additive exPlanation algorithm to disclose the most important features for identifying HDAC3i. On the independent test dataset, DeepHDAC3i achieved an accuracy of 0.965, MCC of 0.930, and AUC of 0.985, which were significantly higher than several conventional machine learning and deep learning models. In addition, upon comparison with the existing methods, DeepHDAC3i secured the best performance with improvements of approximately 4.80, 4.70, 6.50, and 9.50% in accuracy, F1, AUC, and MCC, respectively. Taken together, DeepHDAC3i is superior to other compared models and can be a useful tool for precisely identifying HDAC3i.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花糖果完成签到 ,获得积分10
刚刚
2秒前
wch完成签到 ,获得积分20
5秒前
6秒前
7秒前
苑小苑完成签到,获得积分10
8秒前
13秒前
16秒前
Ygy完成签到,获得积分10
16秒前
丘比特应助谭日东采纳,获得10
17秒前
20秒前
zxcharm完成签到,获得积分10
22秒前
26秒前
34秒前
spider534完成签到,获得积分10
36秒前
甘乐完成签到,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
leaolf应助科研通管家采纳,获得10
39秒前
leaolf应助科研通管家采纳,获得10
39秒前
scenery0510完成签到,获得积分10
40秒前
期待未来的自己应助甘乐采纳,获得10
42秒前
Iso发布了新的文献求助10
44秒前
Orange应助fmf_fjx采纳,获得10
49秒前
49秒前
勤恳的书文完成签到 ,获得积分10
50秒前
玩命的平蓝完成签到,获得积分10
54秒前
虚拟的水之完成签到 ,获得积分10
1分钟前
1分钟前
可爱的猕猴桃完成签到,获得积分20
1分钟前
负责灵萱完成签到 ,获得积分10
1分钟前
马美丽完成签到 ,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
1分钟前
王珏完成签到,获得积分10
1分钟前
雨后森林完成签到,获得积分10
1分钟前
章鱼小丸子完成签到 ,获得积分10
1分钟前
sanyecai完成签到,获得积分10
1分钟前
1分钟前
无心的天真完成签到 ,获得积分10
1分钟前
一条摆摆的沙丁鱼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4430255
求助须知:如何正确求助?哪些是违规求助? 3907262
关于积分的说明 12138809
捐赠科研通 3553290
什么是DOI,文献DOI怎么找? 1950105
邀请新用户注册赠送积分活动 990153
科研通“疑难数据库(出版商)”最低求助积分说明 886109