共沉淀
选择性
催化作用
化学
材料科学
无机化学
化学工程
核化学
有机化学
工程类
作者
Hao Yu,Tshimanga Landry Wa Tshimanga,Mukendi Archip Tshimanga,Haoran Xu,Jia Fu,Lei Tian,Meng Gao,Liangmin Ning
标识
DOI:10.1002/slct.202501733
摘要
Abstract In addressing the critical challenge of mitigating greenhouse emissions, the conversion of CO 2 using cost‐effective and abundant CuO‐based catalysts emerges as a pivotal strategy. This study explores the enhancement of CO 2 conversion using cost‐effective CuO‐based catalysts synthesized via coprecipitation. Through comprehensive characterizations, including XRD, BET, ICP‐MS, SEM, EDS, and XPS, we investigated the physicochemical properties of synthesized CuO/ZnO/Al 2 O 3 catalysts. The addition of NH 3 significantly enhanced the dispersion, catalyst–support interactions, and surface basicity of ZnO/Al 2 O 3 (1:1) + 5 wt.%CuO, resulting in a CO 2 conversion of 5.32 wt.% and an ROH selectivity of 0.19 wt.%. ROH selectivity increases in the following order ZnO/Al 2 O 3 (1:1) + 5 wt.%CuO < ZnO/Al 2 O 3 (3:2) + 5 wt.%CuO and ZnO/Al 2 O 3 (7:3) + 5 wt.%CuO < ZnO/Al 2 O 3 (4:1) + 5 wt.%CuO < ZnO/Al 2 O 3 (9:1) + 5 wt.%CuO. By optimizing the ZnO/Al 2 O 3 ratio, we observed a trend in increasing ROH selectivity, with peak performance achieved in ZnO/Al 2 O 3 (1:1) + 5 wt.%CuO. Notably, coprecipitation synthesis positively impacted catalytic performance and stability, underscoring the potential of these catalysts in sustainable CO 2 conversion technologies. This trend underscores the importance of fine‐tuning the ZnO/Al 2 O 3 ratio in maximizing ROH selectivity. This study reveals the significant potential of CuO/ZnO/Al 2 O 3 catalysts, optimized through precise compositional adjustments and synthesis techniques, in advancing CO 2 conversion technologies. The findings underscore the critical role of innovative catalyst design in mitigating greenhouse emissions and pave the way for future research in this vital area.
科研通智能强力驱动
Strongly Powered by AbleSci AI